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Modeling of 3D Flow and Scouring around Circular Piers
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ABSTRACT

By combining a three-dimensional (3D) flow model with a scour model, a morphological model has been
constructed to simulate the flow field and bed evolution around bridge piers.  The large eddy simulation (LES) approach
with Smagorinsky’s subgrid-scale (SGS) turbulent model is employed to compute 3D flow velocity and bed shear
fields.  For relatively coarse bed materials, the scour model solves the sediment continuity equation in conjunction
with van Rijn’s bed-load sediment transport formula to simulate the bed evolution.  Without recomputing the 3D
flow field as the bed deforms, the shear field obtained from the 3D flow model under flatbed conditions is modified
according to the bed deformation.  The 3D flow model is verified with experimental data obtained under flatbed
conditions.  The gravitational effect of the sloping bed of the scour hole on sediment particle movement is incorporated
as part of the effective bed shear stress in the scour model.  The scouring effect resulting from downflow in the region
in front of the pier is included in the model by referring to the vertical jet flow scour relation.  The measured data
of scour evolution at the pier nose obtained by R. Ettema and bed elevation contours around a pier obtained by G.
H. Lin are used for calibration and verification of the model.  The results show good agreement between simulation
and experimental nesults.
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I.  Introduction

As water flow approaches a bridge pier, it is forced to
separate and pass around the pier.  The flow phenomena are
complex due to the presence of a boundary layer as well as
an adverse pressure gradient set up by the bridge pier.
Consequently, the mechanism of the local scouring processes
is complicated by 3D flow patterns, such as horseshoe vortex
and downward current (downflow), and bed shear distribution
around the pier.  Many researchers have conducted a vast
number of experiments in laboratory flumes to investigate the
local scour depth around a bridge pier.  Quite a few empirical
formulas predicting the maximum scour depth have been
developed under various experimental conditions.  However,
most of the experiments have been carried out in flumes under
idealized conditions, such as steady flow, uniform sediment,
simplified geometry, etc. (Ettema, 1980; Chiew and Melville,
1987; Lin, 1993).  Therefore, their applications to field situ-
ations may still be problematic and may produce questionable
results.  A more satisfactory approach for further applications
in field situations is to simulate accurately the flow field and
scouring processes using a 3D numerical model.  Modeling
3D flow field and scour hole evolution around a bridge pier
is more feasible nowadays because the computational cost and

computational time have significantly decreased.
In recent years, several numerical models have been

constructed for simulating the 3D flow field and/or bed variations
around circular piers.  Richardson and Panchang (1998) used
a 3D transient model to compute the flow field around a pier
within a given fixed scour hole.  Without modeling sediment
transport, they estimated the depth of equilibrium scour simply
by means of Lagrangian particle-tracking analysis.  By incor-
porating various sediment transport models, a few researchers
have developed scouring models with various features.  Omitting
the transient terms, Olsen and Malaaen (1993) computed the
scour hole development by solving the 3D Navier-Stokes equa-
tions with the κ-ε (turbulent kinetic energy and dissipation
rate) model for the Reynolds stresses, and the advection-
diffusion equation for sediment transport.  Olsen and Kjellesvig
(1998) extended the aforementioned model of Olsen and
Malaaen with transient terms.  For a scouring process covering
416 hours, however, a computational time of 9 weeks on an
IBM-370 workstation was required.  Using a finite element
method to solve the 3D Navier-Stokes equations along with
a stochastic turbulence-closure model, Dou (1997) proposed
a function called the sediment transport capacity for local
scouring to express the effects of downflow, vortex strength
and turbulent intensity in the sediment transport part.  Never-
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theless, three more coefficients in the function of the sediment
transport capacity for local scouring need to be determined.
Roulund et al. (1999) simulated the scouring processes over
only a very short duration (5 minutes) by using a 3D flow
model and solving the sediment continuity equation with
Engelund’s bedload transport formula (Engelund, 1966).    Tseng
et al. (2000) investigated numerically the 3D turbulent flow
field around square and circular piers.  The simulated results
they obtained indicated that the velocity and shear stress around
the square pier were significantly higher than those around
the circular pier.  According to the aforementioned researches,
the computational cost and time are still the major limitations
for further applications when these models are used.

In the present study, a morphological model consisting
of a 3D flow model and a scour model was developed to
simulate the bed evolution around a circular pier.  In order
to reduce the computational time involved in repeatedly re-
computing the 3D flow field as the bed scouring process
progresses, an algorithm was developed to modify the bed
shear field in order to account for bed deformation due to
scouring.  For the flow model, the simulated 3D flatbed flow
field is compared here with experimental data obtained by Yeh
(1996).  In the scour model, the gravity effect of the sloping
bed of the local scour hole is incorporated as part of the effective
bed shear and verified by experimental results.  Furthermore,
in order to simulate the scouring process resulting from
downflow in front of the pier, a relationship based on sub-
merged jet flow scouring (Clarke, 1962) has been modified
and employed.  The experimental data for the scour depth at
the pier nose obtained by Ettema (1980) and scour depth
contours obtained by Lin (1993) are compared with simulated
results obtained in this study to check the validity of our
model.

II.  Three-Dimensional Flow Model

1. Velocity Field

In order to describe the complex 3D flow patterns,
including downflow in front of the pier and a horseshoe vortex
around the circular pier, the weakly compressible flow theory
(Song and Yuan, 1988) was employed.  The large eddy simu-
lation (LES) approach incorporated with Smagorinsky’s
subgrid-scale (SGS) turbulence model was adopted to simulate
the flow and bed shear fields (Song and Yuan, 1990).  The
LES approach has gained wider acceptance for solving hy-
draulic problems because the SGS turbulence model is less
dependent on the model coefficient than the κ-ε turbulence
model (Thomas and Williams, 1995).  The mathematical
expressions for the weakly compressible flow equations, LES
approach, SGS turbulence model, boundary conditions and
numerical approach in explicit finite volume method based
on MacCormack’s predictor-corrector scheme are given in the
Appendix.

2. Bed Shear

Generally speaking, the bed shear stress (τij) can be
calculated using the following equation (Nezu and Rodi,
1986):

   τ ij = µ(
∂ ui

∂xj
+

∂ u j

∂xi
) – ρui′u j

′ , (1)

where µ is the dynamic viscosity;   ui is the time-averaged
velocity component; and −ρ   ui′u j

′  is the Reynolds’ stress.
For a hydraulically smooth bed, the Reynolds’ stress

term in the viscous sublayer is much smaller than the viscous
shear stress term.  Hence, the Reynolds’ stress term is negligible,
and the bed shear stress can be calculated directly as follows:

   τ ij = µ(
∂ u i

∂x j
+

∂ u j

∂x i
) (2)

In order to calculate the bed shear stress using Eq. (2),
the size of the grid mesh adjacent to the bed must be kept
smaller than the thickness of viscous sublayer.

To make possible the bed shear modification made to
take into account bed deformation during scouring, Taylor
series expansion is applied to the logarithmic velocity profile
for bed deformation of ∆Z.  This leads to (Yen et al., 1997)

  U
u*

= U
u*

+ Dz , (3)

in which  U  is the modified depth-averaged velocity after bed
deformation;   u*  is the modified shear velocity after bed
deformation; U is the depth-averaged velocity before bed
deformation; u* is the shear velocity before bed deformation;
Dz = 2.5    [∆Z

R – 1
2(∆Z

R )2] ; and R is the water depth before bed

deformation.  Invoking the definitions τ = ρ   u*
2  and    τ = ρu*

2 ,
Eq. (3) becomes

   τ = τ(
u *
u *

)2 = τ × [U
U

(1 +
u *

U
D z)]

– 2 , (4)

in which τ  is the modified bed shear stress after bed deformation;
and τ is the bed shear stress before bed deformation.

Strictly speaking, the velocity profile in the region close
to the pier no longer satisfies the logarithmic distribution.
Therefore, Eq. (4) can only be applied in the region some
distance away from the pier.  However, the ratio of the modified
bed shear to the original bed shear in the vicinity of the pier
is assumed to be the same as that in the region with the
logarithmic velocity profile.

III.  Scour Model

1. Bed Evolution

The evolution of the scour hole can be simulated by
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solving the sediment continuity equation with a sediment
transport relation.  Assuming that scouring takes place in the
form of bedload transport, one can write the 2D sediment
continuity equation as

   ∂qsx

∂x +
∂qsy

∂y + (1 – λn)
∂Zb

∂t = 0 , (5)

where qsx and qsy are the sediment transport rates in the x-
and y-directions, respectively; λn is the sediment porosity; and
Zb is the bed elevation.

For coarse bed materials, sediment basically moves by
rolling, sliding or jumping along the bed.  The widely used
bed-load sediment transport formula proposed by van Rijn
(1986) is employed in the present study.  van Rijn’s bed-load
transport formula is expressed as

   
qs = 0.053 Ss

′g d1.5 T*
2.1

D*
0.3 , (6)

where qs is the sediment volume transport rate per unit width;
 Ss

′  = (Ss − 1); Ss is the specific gravity of the sediment; g is
the gravitational acceleration; d is the sediment diameter, T*

= (τb−τc)/τc, which is called the transport stage parameter; τb

is the bed shear stress; τc is the critical shear stress; D* =
d(ρ2  Ss

′ g/µ2)1/3, which is called the particle parameter; and µ
is the dynamic viscosity.

To solve Eq. (5), open and solid boundary conditions
are imposed.  The upstream inflow boundary condition is given
by qsx = qsy = 0 for clear water scour.  The downstream outflow
boundary condition is also given by qsx = qsy = 0 because at
some distance downstream, the flow becomes uniform again.
For solid and lateral boundaries, no sediment flux conditions
(qsn = 0, where qsn is the transport rate in the direction normal
to the boundaries) are imposed.

2. Effect of Local Bed Slope

In order to apply the sediment transport formula appro-
priately in the scour hole with a sloping bed, the gravitational
component along the bed surface is considered here as a part
of the effective shear stress driving the motion of the sediment
particles.  On the sloping bed of the scour hole, the direction
of sediment motion may not coincide with the direction of
bed shear due to the flow motion; it is determined by the
immersed weight of the sediment particle and the bed shear
on the particle.  In the direction of sediment motion, therefore,
the effective shear stress empolyed in van Rijn’s bed-load
transport formula is expressed as

τbe = τb × cos(β − δ) + w' × sinθ × cos(αd − δ)/A,   (7)

where τbe is the effective shear stress; τb is the bed shear stress
due to the flow motion; β is the angle between the direction
of bed shear and the x-axis; δ is the angle between the direction

of sediment motion and the x-axis, and can be evaluated using
a method given elsewhere (Yen et al., 1997); w' is the immersed
weight of the sediment particle; θ  is the angle of the local
bed slope; αd is the angle between the direction along the local
sloping bed and the x-axis; and A is the projected area of the
sediment particle.

In Eq. (7), the first term on the right hand side represents
the effective bed shear due to flow along the direction of
sediment motion, and the second term represents the effective
immersed sediment weight component, again along the direc-
tion of sediment motion.

Considering a sediment particle on the sloping bed in
the flow, the friction force Ff opposite to the direction of
incipient sediment motion is proportional to the normal force
N.  Since the friction force per unit area of incipient motion
is equal to the critical effective shear stress τc, one can write

τc = Ff /A = kf N/A, (8)

where kf is the friction coefficient, which is equal to tanφw,
and φw is the repose angle of sediment particles in still water.

In Eq. (8), the normal force N acting on a sediment
particle includes the immersed sediment weight component
w'cosθ and the lift force FL caused by the flow.  Therefore,
Eq. (8) becomes

   τc = tanφw(w′
A cosθ –

FL
A )

   = tanφw
w′
A cosθ(1 –

FL

w′cosθ )

   = tanφw
w′
A cosθ[1 – m(θ)] , (9)

in which m(θ) represents the effect of the lift force of the flow,
which reduces the normal force acting on a sediment particle
and is obviously dependent on the local bed slope angle  θ.
When θ becomes large, the mean flow velocity becomes
smaller due to the effects of increasing water depth and flow
separation; consequently, the lift force decreases.  Therefore,
the coefficient m(θ) becomes smaller as θ increases.  Another
special case which needs to be considered is m(θ) = 0, and
the remaining Eq. (9), tanφw  w′

A
cosθ, simply represents the

critical shear stress for sediment particles on the sloping bed
in still water.  The coefficient m(θ) can be calibrated in the
model.

3. Effect of Downflow

As water flow approaches a pier, it is forced to form
the downflow that essentially dominates the scouring process
in the area immediately upstream of the pier.  In order to
describe the effect of the downflow on the scouring process,
the submerged jet flow scouring process is adopted to model
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the evolution of the scour depth in the area in front of the pier.
Clarke (1962) studied the scour depth evolution gen-

erated by submerged vertical jet flow and proposed the fol-
lowing relations:

   y sd = (0.21 ± 0.003)D c

D c

D u
= 5.5(

w 0

gD u

)0.43 ⋅ (
w 0
ω )0.05 ⋅ (

gt
ω )0.05

, (10)

where ysd is the scour depth generated by submerged vertical
jet flow;   Dc is the diameter of the scour hole; Du is the diameter
of the jet flow; wo is the exit velocity of jet flow; t is time;
and ω is the sediment particle fall velocity.

In the present study, the downflow is considered analo-
gous to the submerged vertical jet flow.  The jet flow exit
velocity wo is replaced with the maximum downflow velocity
(downflow strength) wm, and the scour depth ysd generated
by the jet flow is replaced with the downflow scour depth dj.
Since the characteristics of the downflow strength which
develope near the bed surface are somewhat different from
those of the jet flow, Eq. (10) is modified by introducing a
coefficient C1.  Thus, one has

   d j

b
= α ⋅ (

w m
u o

)0.48 ⋅ (
t ⋅ u o

b
)γ , (11)

where b is the pier diameter; uo is the mean velocity of the
approaching flow; γ is an exponent depending on wm; and

   α =
1.155 ⋅ C1 ⋅ Du

0.785uo
0.48 – γ

g0.215 – γω0.05 + γb1 – γ . (12)

In the present study, α is a coefficient that needs to be
calibrated in the scour model.  Rouse’s experimental results
(Rouse, 1949) are used to establish a relationship between γ
and wm as follows:

   γ = 0.03
wm
ω + 0.078 . (13)

Furthermore, Ettema’s experiment results (Ettema, 1980)
are employed to develop, by regression, a relationship between
the downflow strength and the scour depth at the pier nose:

wm/wmo = 1 − 0.33(ds/b), (14)

where wm is the downflow strength for a scour hole having
a depth of ds at the pier nose; wmo is the downflow strength
under flatbed conditions; and ds/b is the ratio of the scour depth
to the pier diameter. (Note that ds/b is negative.)

In the present study, Eq. (11) is incorporated into the
scour model.  The increase in scour depth due to downflow,
∆dj, in one time step can be calculated using Eq. (11) first,

and then the bed deformation due to the effective shear stress,
∆Zb, in the same time step can be computed using Eq. (5) with
the bed-load transport formula.  The final bed elevation at the
pier nose, ds, is the sum of ∆dj and ∆Zb for all time steps.

4. Numerical Treatment

For numerical computation in the scour model, Eq. (5)
is transformed into a conservative form as follows:

   ∂Z b

∂t
+ ∇ × H s = 0 , (15)

where    Hs = 1
1 – λn

[qsx, qsy] .

By integrating over a finite control area and invoking
the divergence theorem, Eq. (15) becomes

   ∂Z b

∂t
= – 1

As
H s × n dΓ

Γ
, (16)

where  Zb  represents the averaged elevation within the finite
control area; As is the area of the finite grid mesh; n  is unit
vector normal to the line of grid mesh; and Γ  is the perimeter
of the finite control area.

By using the forward difference in time, the bed elevation
  (Zb)m + 1 in the advanced time step can be calculated as follows:

   (Z b)m + 1 = (Z b)m –
∆t s

As
H s × n dΓ

Γ
, (17)

where the subscript m represents computational time, and ∆ts
is the time step adopted in the scour model.

IV. Verification of the Local Bed-Slope
Effect

To verify the gravity effect of the local bed slope in a
scour hole, as described in the scour model (see Section III),
several experiments were carried out in the present study.  The
experiments were conducted in a box 60 cm long by 20 cm
wide.  The box was first filled partially with sand with a mean
diameter of 1.3 mm.  The initial bed slope was set at 45° and
sustained by a thin plate.  Then water was slowly poured into
the box, and the plate was quickly but carefully removed.  After
removal of the plate, sediment particles began to move down
the slope mainly due to its gravitational component.  The final
stabilized bed slope was found to be at approximately the angle
of repose of sediment in water.

Four runs (Run 1 − Run 4) of experiments under the
same set of conditions were conducted repeatedly.  The evolution
of the bed slope was recorded by a SONY TRV16 camera
recorder (Sony Co., Tokyo, Japan).  The recorded film was
then analyzed using the Ulead VideoStudio 3.0 SE software
program (Ulead Systems Inc., Taipei, Taiwan, R.O.C.).  The
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initial and final bed profiles for all the runs are plotted in Fig.
1.  The evolution of the bed elevation above the toe of the
initial sloping bed (see point A in Fig. 1) is plotted in Fig.
2.  As can be seen in Fig. 2, the bed elevation above point
A increases rapidly during the early stage, and then begins
to level off at about 1.5 sec.

Numerical simulation for the experiments described
above was carried out under an initial bed slope of 45°.  The
bed profile evolution was simulated by solving Eq. (5) incor-
porated with Eq. (6).  In the simulation, the effective shear
stress was calculated using Eq. (7), and the critical shear stress
was calculated using Eq. (9).  It was assumed that the mean
velocity caused by the removal of the plate was negligible,
and that eddies generated by the plate decayed very rapidly.
Under these assumptions, the value of τb in Eq. (7) was taken
as zero.  For the critical effective shear stress τc, the coefficient
m(θ) in Eq. (9) representing the effect of eddies on the reduction
of the normal force was mainly dependent on the decay time
of eddies rather than on the change of θ.  The initial value
of m(θ) was calibrated to 0.91, which corresponded to τc =
0.74 N/m2 obtained from the Shields diagram, and then m(θ)
rapidly approached zero as eddies died out due to their rapid

decay.  The simulated bed profile at t  = 2 sec. and the evolution
of the bed elevation above point A are plotted in Figs. 1 and
2, respectively.  In Fig. 2, one can see that the simulated bed
evolution and equilibrium time (at 1.5 sec) agree well with
the measured data.  These results clearly show that treating
the gravitational component along the sloping bed of the local
scour hole as a part of the effective shear stress driving the
motion of the sediment particle is quite reasonable.

V. Flow Field Simulation

For validation of the 3D flow model, the experimental
results obtained by Yeh (1996) were compared with simulation
results.  The conditions for the experiment were as follows:
the pier diameter b = 0.031 m; the approaching surface velocity
uo = 0.126 m/s; the approaching water depth ho = 0.082 m;
the bed slope So = 0.0013; and the bed shear velocity u* =
6.83 × 10−3 m/s.

Numerical simulation was carried out under the condi-
tions stated above.  A structured grid mesh on the x-y plane
was generated by an elliptic grid generator (Tseng, 1994).  As
shown in Fig. 3, a two-dimensional grid mesh with 60 elements
in the x-direction and 36 elements in the y-direction was drawn,
and there were 22 elements of nonuniform size in the z-
direction.  The smallest grid element was 0.028b × 0.021b
× 0.003b.  The simulation domain was −2 ≤ x/b ≤ 9.5, −2 ≤
y/b ≤ 2, and  0 ≤ z/b ≤ 2.65.  The upstream boundary condition
was given by the measured velocity profile along the z-
direction.  The downstream boundary condition was given by
the Neumann  condition (∂u/∂x = ∂v/∂x = ∂w/∂x = 0).  The
boundary condition   on the sides (i.e., y/b = ±2) was given
by the fully slip condition (∂u/∂y = ∂w/∂y = 0 and v = 0).
For the solid boundary condition, the cells adjoining the bed
were given by the no-slip condition, and the cells adjoining
the pier surface were prescribed by the partial slip condition
in order to consider the variation of the local thickness of
boundary layer relative to the local cell size (Song and Yuan,
1990).  A value of 0.13 for the Smagorinsky constant was
selected, which was within a reasonable range (0.094 ~ 0.2)
for solving open channel flow problems (Thomas and Williams,
1995).

Some of the simulated results are plotted in Figs. 4 −
6.  Since the flow field at section x/b = 9.5 is almost the same

Fig. 1.  Simulated and measured bed profiles.

Fig. 2. Bed evolution at point A.

Fig. 3. Projection of the grid mesh on the x-y plane and grid sized in the
z-direction.
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as that of the upstream inflow, the simulated results are only
plotted within the range of −2 ≤ x/b ≤ 3 in the x-direction to
clearly show the detailed flow field around the pier.  Figure
4(a) shows the simulated velocity field on the vertical plane
section (x-z plane) along the centerline.  A downflow along
a vertical line near the pier nose and a circulation area, as a
component of a horseshoe vortex, close to the bed can be clearly
seen.  Figure 4(b) shows the simulated velocity field on the
vertical plane (y-z plane) 90° from the centerline.  One can
clearly see that the velocity near the bed is enhanced.  This
may have significant implications for the initial stage of
scouring.

Figure 5(a) presents the simulated velocity field on the
horizontal plane at z/b = 0.032.  It clearly shows that reverse
flow exists in front of the pier.  A comparison between the
measured and simulated isovels at z/b = 0.032 above the bed,
presented in Fig. 5(b), indicates good agreement between them.
From these results, one can see that the 3D flow model can
simulate flow features around the pier very well.

Upon obtaining the velocity field, the bed shear stresses
were computed in the 3D flow model using Eq. (2).  The
simulated bed shear stresses along the centerline upstream of
the pier are plotted in Fig. 6 and compared with the measured

data (Yeh, 1996).  Another simulated result plotted as the
dotted-line in Fig. 6 is from a previous work (Yen et al., 1997).
It is based on the assumption that the velocity profile is of

Fig. 4. (a) Simulated velocity field on the vertical plane section (x-z plane)
along the centerline. (b) Simulated velocity field on the vertical plane
(y-z plane) 90° from the centerline.

Fig. 5. (a) Simulated velocity field on the horizontal plane at z/b = 0.032.
(b) Comparison of simulated (upper half) and measured (lower half)
isovels on the horizontal plane at z/b = 0.032 around the pier.

Fig. 6. Comparison of simulated and measured bed shear stresses along
the centerline in front of the pier.
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logarithmic distribution for computation of the bed shear, and
it does not fit the measured data in the region of −1.5 <
x/b < −0.5.  In this region, one can find that the bed shear
stress varies from positive to negative at the point of flow
separation, which is located approximately at x/b = −1.25.  The
location of this separation point, however, falls slightly up-
stream from the range of −1.1 ≤ x/b ≤ −0.7 given by Graf
and Yulistiyanto (1998).  Nevertheless, the bed condition for
the present simulation is hydraulically smooth (Yeh, 1996);
hence, the turbulence intensity in the flow may not be strong
enough to transfer sufficient momentum into the vicinity of
the bed surface to push the separation point further downstream.

VI. Scour Simulation

For calibration and verification of the scour model, the
experimental conditions used and results obtained by Ettema
(1980) and by Lin (1993) were employed for simulation and
comparison.  The flow and sediment conditions used in their
experiments are listed in Table 1.

Ettema’s experiments were used to calibrate the model
coefficients.  After a 15-hour (tuo/b = 160,000) scour simu-
lation run, the coefficient α in Eq. (11) was calibrated and
found to be 0.5, and the coefficient m(θ) in Eq. (9) was
calibrated as shown in Fig. 7.  In Fig. 8, the simulated scour
depth at the pier nose as a function of time is compared with
the measured data, and one can see rather good agreement

between them.
For verification of the scour model, the calibrated

coefficients were used to simulate the scour depth evolution
in Lin’s experiments.  The simulated scour depth at the pier
nose is plotted in Fig. 9, and the measured scour depth at 2
hours (tuo/b = 53,000) is also plotted in the figure to show
the good match.  The ratio of the maximum scour depth to
the water depth is about 1/6 in this case, and this parameter
is mainly affected by the ratio of the approaching velocity to
the critical velocity, the ratio of the particle diameter to the
pier diameter, the ratio of the approaching water depth to the
pier diameter, etc.  Furthermore, the simulated and measured
final bed elevation contours are shown in Fig. 10 for comparison.
The scour hole extends around the circular pier with a deeper
area at the upstream side and a shallower one downstream.
With the exception of a small region on the downstream side,
the simulated results of the scour pattern and maximum scour
depth are satisfactory, and the overall simulation is fairly good.
In the wake region close to the pier where turbulence is
relatively strong, the effective critical shear stress for sediment
motion may be significantly reduced.  This fact has not been
accounted for in the simulation model; therefore, the simu-

Table 1. Conditions of Experiments Adopted for Scour Simulations

Ettema (1980) Lin (1993)

Approaching flow velocity uo (m/s) 0.71 0.65
Approaching flow depth h (m) 0.60 0.39
Diameter of bridge pier b (m) 0.24 0.088
Diameter of sediment d (mm) 1.90 2.50
Ratio of approaching shear velocity

0.90 0.85
to critical shear velocity u*/u*c

Fig. 7. Coefficient m(θ) calibrated by means of Ettema’s experiments.

Fig. 8. Comparison of simulated and experimental results of the scour depth
evolution at the pier nose − a calibration run.

Fig. 9. Comparison of simulated and experimental results of the scour depth
evolution at the pier nose − a verification run.
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lation yields slightly less scouring in the small region behind
the pier.

VII. Summary and Conclusions

The morphological model consisting of a 3D flow model
with a scour model has been constructed to simulate the bed
scour evolution around a bridge pier.  For 3D flow modeling,
the LES approach with Smagorinsky’s SGS turbulence model
has been employed to compute the velocity and bed shear stress
fields.  In the scour model, the sediment continuity equation
incorporated with van Rijn’s bed-load sediment transport for-
mula for relatively coarse materials has been solved to obtain
the bed evolution.

The 3D flow model has been validated using experi-
mental data measured using a Fiber-Optic Laser Doppler
Velocimeter under flatbed conditions (Yeh, 1996), and a
Smagorinsky constant of 0.13 was selected, which falls rea-
sonably well within the range (0.094 ∼ 0.2) in open channel
flow problems (Thomas and Williams, 1995).  From the
simulation results, it has been found that the 3D flow model
can simulate the velocity field around the pier very well.

The effect of the local bed slope of the scour hole on
the direction of sediment particle motion has been incorporated
into the model as part of the effective shear stress.  Experiments
as well as simulation were conducted to verify this effect.  The
effect of downflow on the scour depth has also been included
in the model by referring to the submerged vertical jet flow
scour relation in order to improve the simulation in the area
in front of the pier.  The experimental data of the scour depth
evolution at the pier nose obtained by Ettema (1980) and the
scour depth contours obtained by Lin (1993) have been com-
pared with the simulated results and show good agreement.
On the basis of the results presented in the present study, the
morphological model proposed herein is regarded as feasible
for further applications in field situations.
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APPENDIX
Basic Theory for 3D Flow Simulation

1. Governing Equations

According to weakly compressible flow theory (Song and Yuan, 1988,
1990), the Mach number in water flow is so small that the fluid density and
sound speed may be regarded as constants without causing significant error.
It is noted that weakly compressible flow is equivalent to hydraulic transient
flow.  Therefore, the equation of state for a fluid may be represented by
the following linear relation:

p − po = ao
2(ρ − ρo), (A1)

where p is the pressure; a is the speed of sound; ρ is the density of the fluid;
and the subscript “o” represents the reference value.

Substituting Eq. (A1) into the equations of continuity and motion
for compressible fluids, the equations become

    ∂p

∂t
+ u j

∂p
∂xj

+ ρoa o
2 ∂u j

∂xj
= 0 (A2)

    ∂(αu i)
∂t

+
∂(αu iu j)

∂xj
+ 1

ρo

∂p
∂xi

= υ ∂2u i
∂xj∂xj

+
υ
3

∂
∂xi

(1 – α) ,          (A3)

where u is the velocity vector; xi and xj are coordinates; υ is the kinematic

viscosity of the fluid; t is time;    α = 1 +
p – p o

ρoa o
2

= 1 + C pM2; Cp is the pressure

coefficient; and M is the Mach number.
When M << 1, the pressure term in Eq. (A2) is negligible and α ≈

1.  Then Eqs. (A2) and (A3) can be rewritten as

    ∂p
∂t

+ ρoa o
2 ∂u j

∂xj
= 0 (A4)

    ∂u i

∂t
+

∂(u iu j)
∂xj

+ 1
ρo

∂p
∂xi

= υ ∂2u i
∂xj∂xj

. (A5)

Equations (A4) and (A5) are defined as weakly compressible flow equations,
which were also used for hydraulic transient flow as the primary governing
equations in the present study.

Generally speaking, Eq. (A5) also can be transformed into  vorticity
equation form and then can be solved to obtain the flow field.  However,
solving the vorticity equation to simulate the flow field around piers may
be more difficult because the initial and boundary conditions are not easy
to prescribe.

2. Large Eddy Simulation

For a high Reynolds number, the turbulent flow contains a wide range
of eddy sizes.  Herein, the concept of large eddy simulation (LES) is adopted
so as to directly calculate the large-scale turbulence that can be resolved
within the computational mesh size and to model only the unresolvable small-
scale turbulence.

In the mesh grid, each flow variable f (velocity component ui or
pressure p) can be represented by an averaged quantity f  plus a quantity

f ' related to subgrid scale turbulence, that is, f = f  + f ' (    f = 1
∆V

f(V,t) × dV
∆V

,

where ∆V is the finite volume of the computational mesh grid and V is its
volume).  Based on the above relationship of the averaged quantity in the
finite volume, the weakly compressible flow equations become (Song and
Yuan, 1988)

    ∂p
∂t

+ ρoa o
2 ∂ uj

∂xj
= 0 , (A6)

   ∂ ui
∂t

+
∂( ui u j)

∂xj
+ 1

ρo

∂p
∂xi

= υ ∂2 ui
∂xj∂xj

– 1
ρo

∂τ ij
∂xj

, (A7)

where    p = p + 1
3ρuk′uk′ is the modified pressure; and    τ ij = ρui′u j′ – 1

3ρδijuk′uk′
is the subgrid scale turbulence stress.  The subgrid turbulence stress is modeled
by the following relation (Smagorinsky, 1963):

   τ ij = – 2ρυ t Sij , (A8)

where υt = (C∆s)
2   (2 Sij S ij)

1/2  is the subgrid eddy viscosity coefficient;
   S ij = 1

2
(∂ u i/∂xj + ∂ u j /∂xi)  is the resolvable rate of deformation tensor; ∆s

is the subgrid length scale dependent on the mesh size; and C is the
Smagorinsky constant, which is the only adjustable parameter in the subgrid
scale turbulence (SGS) model.

3. Boundary Conditions

To solve Eqs. (A6) and (A7), adequate boundary conditions should
be imposed.  Typical boundary conditions are described as follows:

(1) Upstream boundary condition:

u = uo(z);    v = w = ∂p
∂x = 0 ; (A9)

(2) Downstream boundary condition:

   ∂u
∂x = ∂v

∂x = ∂w
∂x = 0 ; p d = p o or ∂p

∂x = 0 , (A10)

where uo is the approaching velocity; pd is the averaged pressure
downstream; and po is the reference pressure.  In the present study,
the downstream boundary condition is given by    ∂u

∂x = ∂v
∂x = ∂w

∂x = 0 ;

  pd = po.
(3) Solid boundary condition: The fully slip condition, partial slip

condition (wall function) or non-slip condition can be adopted ac-
cording to the characteristics of the solid boundary (Tseng, 1994;
Yen et al., 1997).

(4) Free surface boundary condition: The kinematic boundary con-
dition or dynamic boundary condition is imposed.
(i) For the kinematic boundary condition, the deformation rate of

the water surface must equal the flow velocity normal to the water
surface, i.e.,

   ∂Zf

∂t
+ u × ∇Z f = u × n  on z = Zf (x,y,t), (A11)

where Zf is the elevation of the water surface; u  is velocity vector;
and n  is the unit vector normal to the water surface.

(ii) For the dynamic boundary condition, there is no momentum flux
through the water surface, i.e.,

σσ ijnij = 0 on z = Zf (x, y, t), (A12)

where σσ ij is the stress tensor defined as σσ ij = −pδij + τij.

4. Numerical Approach

The finite volume method adopted in the model is the natural method
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most compatible with the volume-averaged LES approach and has sufficient
flexibility to fit irregular boundaries.  In the framework of the finite volume
method, MacCormack’s explicit predictor-corrector scheme (MacCormack,
1969), which is of second order accuracy in both time and space, is employed
to solve the governing equations.

Equations (A6) and (A7) can be rewritten in a conservative form:

   ∂U
∂t + ∂E

∂x + ∂F
∂y + ∂G

∂z = 0 ,  or    ∂U
∂t

+ ∇ ⋅ H = 0 , (A13)

where

U =   [p, u , v , w ]T , H = [E, F, G],

   E = [ρoa o
2 u , u 2 +

p
ρo

– υ∂ u
∂x +

τ xx
ρo

, uv– υ∂ v
∂x +

τ yx

ρo
,

   uw– υ∂ w
∂x +

τ zx
ρo

]T ,

   F = [ρoa o
2 v , uv– υ∂ u

∂y +
τ xy

ρo
, v 2 +

p
ρo

– υ∂ v
∂y +

τ yy

ρo
,

   vw – υ∂ w
∂y +

τ zy

ρo
]T ,

   G = [ρoa o
2 w , uw– υ

∂ u
∂z +

τ xz
ρo

, vw – υ
∂ v
∂z +

τ yz

ρo
,

   w 2 +
p

ρo
– υ

∂ w
∂z +

τ zz
ρo

]T .

After integrating over a finite control volume ∆V and using the
divergence theorem, Eq. (A13) can be replaced by

   ∂U
∂t = I , (A14)

where I = −    1
∆V

H × n ds
s

; U represents a mean quantity within the finite

control volume (the grid mesh size); and s is its finite control surface.
With MacCormack’s predictor-corrector scheme, Eq. (A14) can be

approximated in two calculation steps as follows:
(1) the predictor step:

   Um + 1 = Um + Im∆t ; (A15)

(2) the corrector step:

   Um + 1 = Um + 1
2(Im + Im + 1)∆t , (A16)

where    Im + 1 = – 1
∆V

H m + 1 × n ds
s

; the subscript m represents the

computation time; and the hat ^ represents the predicted values.
For numerical stability, the time step ∆t in Eqs. (A15) and (A16)

must be determined by using the Courant-Friedrich-Lewy condition (Song
and Yuan, 1988):

   ∆t ≤ Cr ⋅ Min[ ∆V
uiΩi + ao Ω

] , (A17)

where Cr is the Courant stability factor with a value of 0.8 adopted in the
present study; ui is the velocity vector; |Ω| is the surface area of the finite
volume; and Ωi is the projected area of |Ω| in the i direction.
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摘　要

本文將三維流場模式與沖刷模式結合成河床形態模式，用來模擬橋墩周圍流場及其沖淤所造成的床形變化。三維

流場模式採用大渦模擬（large eddy simulation）方法，配合斯馬格林斯基（Smagorinsky）之次網格紊流模式，模擬橋
墩周圍之三維流速與底床剪應力場。針對較大粒徑之均勻沈滓，沖刷模式採用范瑞因（van Rijn）之沈滓輸送公式結
合沈滓連續方程式，求解橋墩周圍之床形變化。在不同沖刷階段下，底床剪應力場是由平床剪應力場修正而得，並不

需重新計算該床形下之三維流場。本研究採用平床流場之試驗資料來驗證三維流場模式。在沖刷模式中，局部床形之

重力效應納入為有效剪應力之一部分；而墩前下向流之沖刷效應是根據射流沖刷關係進行處理。最後，本文分別採用

葉特馬（R. Ettema）與林景輝（G.H. Lin）之試驗資料來檢定與驗證沖刷模式。


