7th Hiroshima Conference on Education and Science in Dentistry

“Diversity in Oral Science Research”

Itsukushima Shrine: Bugaku dancer (Court dance and music)
Photo Courtesy of Hiroshima Prefecture

Hiroshima University School of Dentistry
7th Hiroshima Conference on Education and Science in Dentistry

Program & Abstracts of 7th Hiroshima Conference on Education and Science in Dentistry
March 29-30, 2018, Hiroshima, Japan

Hiroshima University School of Dentistry
Time Table

Thursday, March 29, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>12:00</th>
<th>13:00</th>
<th>14:00</th>
<th>15:00</th>
<th>16:00</th>
<th>17:00</th>
<th>18:00</th>
<th>19:00</th>
<th>20:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>1F: Entrance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloak</td>
<td>1F: Small Conference Room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference Program</td>
<td>2F: Large Conference Room</td>
<td>13:00 ~ 13:10 Opening</td>
<td>13:10~14:10 Special Lecture</td>
<td>14:10~15:50 Session I: Joint degree, Sandwich program</td>
<td>15:50~16:30 Coffee Break and Adjustment Time</td>
<td>16:30~17:50 Young Investigator Session I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poster Exhibition</td>
<td>2F: Medium Conference Room</td>
<td>12:00~13:00 Poster Preparation</td>
<td>13:00~17:30 Poster Exhibition</td>
<td>15:50~16:30 Poster Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reception</td>
<td>VIOLA Dining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Friday, March 30, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>8:00</th>
<th>9:00</th>
<th>10:00</th>
<th>11:00</th>
<th>12:00</th>
<th>13:00</th>
<th>14:00</th>
<th>15:00</th>
<th>16:00</th>
<th>17:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>1F: Entrance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:30~17:00 Registration</td>
</tr>
<tr>
<td>Cloak</td>
<td>1F: Small Conference Room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:30~17:00 Cloak</td>
</tr>
<tr>
<td>Conference Program</td>
<td>2F: Large Conference Room</td>
<td>9:00~10:30 Session II: Advanced Imaging</td>
<td>10:30~12:00 Session III: Application of Advanced Engineering Technologies</td>
<td>12:00~13:15 Luncheon Seminar</td>
<td>13:15~14:45 Session IV: New Insights into Extracellular Vesicle Biology</td>
<td>14:45~15:20 Coffee Break and Adjustment Time Group Photo</td>
<td>15:20~16:40 Young Investigator Session II</td>
<td>16:40~17:00 Closing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poster Exhibition</td>
<td>2F: Medium Conference Room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9:00~16:40 Poster Exhibition</td>
</tr>
</tbody>
</table>

※Venues
Conference: KOUJIN Conference Hall on Kasumi Campus, Hiroshima University
Welcome Reception: VIOLA Dining, Kasumi Campus Hiroshima University
Contents

Preface

* K. Kato .. i

Special Lecture

* Periodontal Precision Medicine
 * Denis F. Kinane 3

Session I

Prospects of International Joint Programs

* Strengthening International Level Research: Nagoya University Joint Degree
 * H. Kasuya 7

* Experience, Execution and Elaboration of the Joint Degree Program between Tokyo Medical and Dental University in Japan and Chulalongkorn University in Thailand
 * T. Ono .. 8

* Integration Tendency in Dental Education at Faculty of Odonto-stomatolgy, University of Medicine and Pharmacy — Ho Chi Minh City
 * Chi Hung Vo 9

* Prospect for International Join Degree in Indonesia
 * Darmawan Setijanto, Udijanto Tedjosasongko, Anita Yuliati, Devi Rianti, Mega Mocharyono Puteri, H. Oka, Phuong Thao T Nguyen, M. Fujii and K. Kato 10

* Perspectives of International Research Collaboration in Hiroshima University, School of Dentistry
 * M. Fujii .. 11

Session II

Advanced Imaging

* Advanced Imaging in Dentistry
 * N. Kakimoto 15

 * T. Minamizaki 16

* In-vivo Dose Imaging via Measurement-guided Dose Reconstruction for Advanced Radiation Therapy
 * I. Sumida 17

* Functional Magnetic Resonance Imaging (fMRI) and Perceptual Curiosity.
 * Rinus Verdonschot 18

Session III

Application of Advanced Engineering Technologies

* EMG Interface Technology and Robotic Arm Prostheses
 * A. Furui and T. Tsuji 21

* Medical Applications of 3D Printing Based on CT and MRI Images in Hiroshima University Hospital
 * S. Iwaguro 22
Development of Computer Aided Diagnosis Based on Computer Anatomy and Its Application to Virtual Experience System

T. Tateyama .. 23

Oral Engineering and Digital Dentistry

T. Kihara .. 24

Luncheon Seminar

YIF-SCAN, A Novel Culture-independent Analytical Method for Detection of Bacteria in the Bloodstream

H. Tsuji .. 27

Session IV

New Insights into Extracellular Vesicle Biology

Secretion System of Bone Matrix and Matrix Vesicle by Osteoblast

S. Kawai .. 31

Isolation of Pro-inflammatory Extracellular Vesicles from Human Dental Pulp Cells

S. Suzuki .. 32

Indispensable Roles of Extracellular Vesicles in Cancer Development

N. Kosaka .. 33

Exosome Engineering for Delivery of Therapeutic Proteins: Principles and Applications of EXPLOR Technology

Eunsoo Kim .. 34

Poster Presentation

Young Investigator Session I .. 45

Young Investigator Session II .. 50

A. Natural Substances .. 56

B. Bacteria, Immunology, Inflammation .. 61

C. MSC, Bone Regeneration .. 69

D. Tumor, Pain, etc. .. 72

E. Craniomaxillo-face, Bone, Radiological Image, etc. .. 77

F. Dental Materials, Techniques, etc. .. 85

G. Epidemiology, Education, Prevention, etc. .. 92
F-6 ... 88
Synthesis and Characterization of Nanocomposite with Different Filler Ratio Ca-PSZ, Silika Nanorod, and Metakaolin For Application of Learning Purpose Artificial Tooth
Vania Christiani

F-7 ... 88
Effect of Elastin-like Polypeptides Incorporation on the Physical Properties of Calcium Phosphate Cement
Sun-Young Kim

F-8 ... 89
Catechol-based Dental Primer
Jin-Soo Ahn, Young-Seok Park and Ho-Beom Kwon

F-9 ... 90
Synthesis and Microstructure Analysis of Graphene Oxide for Dental Materials Applications
Angela Evely, Anastasia Alamanda Chakravitha, Stefani Kartika Putri, Tolisty Novitasari Abdullah, Idham Pribadi Mochammad and Bambang Sunendar Purwasasmita

F-10 ... 90
Incremental Technique on Bulk Fill Composite Resin to Reduce Microleakage in Deep Cavity
Maria Andisa Mayangsari, M. Mudjiono and Nanik Zubaidah

F-11 ... 91
Flexural Strength of High Viscosity Bulk Fill Resin Composites
Kornkamon Sukjit, Panithan Rujirasak and Subin Puasiri

F-12 ... 91
Development of Novel Porous Titanium as Bone Reconstruction Material
R. Kobatake, K. Doi, Y. Makihara, Y. Oki, T. Kubo, H. Abeura and K. Tsuga

F-13 ... 92
Effect of Repeated Firing on Dental Zirconia Surface
CHUNG, Shin Hye

G. Epidemiology, Education, Prevention, etc.

G-1 ... 92
Caries Risk and Prevention Care Choice of Pre-school Aged Children
A.A Suwargiani, R Wardani and F Meditia P

G-2 ... 93
Comparison between Caries and Filling Prevalence at the Age of 8-15 Years in Bandung Indonesia Population
I Sasmita and L Epsilawati

G-3 ... 93
Health Seeking Behavior of Solving Dental Problem in Children Aged 9-11 Years Old in District of Sukajadi Bandung City
Grace Monica, Deborah Cerfina and Shelly Lelyana
F-9 Synthesis and Microstructure Analysis of Graphene Oxide for Dental Materials Applications

Angela Evelyna¹, Anastasia Alamanda Chakravitha², Stefani Kartika Putri², Tolisya Novitasari Abdullah², Idham Pribadi Mochammad² and Bambang Sunendar Purwadisa³

¹ Dental Materials Department, Faculty of Dentistry, Maranatha Christian University, Bandung, Indonesia
² Faculty of Dentistry, Maranatha Christian University, Bandung, Indonesia
³ Physics Engineering, Advanced Material Processing Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

BACKGROUND: Dental composite resin is one of the most commonly used restoration materials in dentistry that fulfills the needs of aesthetics and physical properties. The use of inorganic ceramic nanoparticle filler on dental composite system has provided many advantages. One of the substances that has possibility to enhance mechanical properties of resin composite material is graphene oxide. Graphene oxide is a derivative from graphene, allotrope of carbon. It has been found to increase mechanical properties such as tensile strength, hardness, wear resistance, durability, and fracture strength. Graphene oxide is also assumed to have antibacterial properties, yet is not toxic for human body.

OBJECTIVES: The objective of this study is to synthesis graphene oxide from graphite and characterized its microstructure through X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FTIR).

MATERIALS & METHODS: Graphene oxide was synthesis from graphite using modified hummers method. XRD was selected to measure the crystal structure of graphene oxide. FTIR was used to certify the presence of oxygen containing functional groups of graphene oxide.

RESULTS: In XRD pattern, graphene oxide shows a characteristic peak at 2θ = 11.49° which shows main characteristic of graphene oxide. FTIR pattern shows the peak at 1068 cm⁻¹ confirms the presence of C-O functional groups.

CONCLUSION: The XRD and FTIR Characterized that, graphene oxide have been formed using modified Hummers method.

Key words: Graphene oxide, nanocomposite, dental materials, XRD, FTIR

F-10 Incremental Technique on Bulk Fill Composite Resin to Reduce Microleakage in Deep Cavity

Maria Andisa Mayangsa¹, M. Mudijono² and Nanik Zubaidah²

¹ Undergraduate student, Faculty of Dental Medicine Universitas Airlangga
² Lecturer, Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga

BACKGROUND: Composite resin remains as one of the most popular restorative material in dentistry. However, polymerization shrinkage is one major drawback of composite resin, especially methacrylate-based composite resin. Polymerization shrinkage can lead to microleakage and may affect the occurrence of secondary caries. In deep cavity, there are 3 major challenges to create a durable restoration: limited depth of cure, shrinkage, and manipulation of proximal contact to adjacent tooth. Incremental placement technique has been widely suggested as an attempt to minimize polymerization shrinkage. Meanwhile, development in dental material has brought us bulk fill composite resin that indicated for direct restoration up to 4 mm thickness with less polymerization shrinkage compared with conventional composites. The combination of incremental technique and bulk fill composite resin can be a time-saving option for restoration of deep cavities.

OBJECTIVE: This study aimed to investigate the microleakage difference between bulk and incremental technique on bulk fill composite resin.

MATERIALS & METHODS: Samples were 24 human premolars and divided into two groups (group 1 and group 2). Cavity of 4 mm depth with 2 mm diameter was made on every sample. Group 1 used bulk technique composite resin placement (4 mm) and group 2 used the placement technique of incremental 2 layers (each 2 mm) horizontally. The entire samples were immersed in 0.3% methylene blue for 24 hours. Samples were cut in bucco-lingual direction and captured into images using digital microscope. Dye penetration was measured for each sample to semi-quantitatively determine the microleakage according to scoring method. Data were analyzed using Mann-Whitney Test.

RESULTS: There were significant differences between sample groups with p value 0.012 (p < 0.05 considered significant). In general, microleakage in incremental technique is smaller than bulk technique.

CONCLUSION: Incremental technique on bulk fill resin composite restoration successfully created less microleakage than bulk technique.

Key words: Bulk fill composite, polymerization shrinkage, incremental technique, bulk technique, microleakage
Synthesis and Microstructure Analysis of Graphene Oxide for Dental Materials Applications

Angela Evelyna¹, Anastasia Alamanda Chakravitha¹, Stefani Kartika Putri¹, Tolistya Novitasari Abdullah¹, Idham Pribadi Mochamad¹, and Bambang Sunendar Purwasasmita²
¹Faculty of Dentistry, Maranatha Christian University, Bandung-Indonesia
²Physics Engineering, Advanced Material Processing Laboratory, Faculty of Industrial Technology

ABSTRACT

Background: Dental composite resin is one of the most commonly used restoration materials in dentistry that fulfills the needs of aesthetics and physical properties. The use of inorganic ceramic nanoparticle filler on dental composite system has provided many advantages. One of the substances that has the possibility to enhance mechanical properties of resin composite material is graphene oxide. Graphene oxide is a derivative from graphite, allotrope of carbon. It has been found to increase mechanical properties such as tensile strength, hardness, wear resistance, durability, and fracture strength. Graphene oxide is also assumed to have antibacterial property, is not toxic for human body. Objectives: The objective of this study is to synthesize graphene oxide from graphite and characterized its microstructure through X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectrometer (FTIR). Methods: Graphene oxide was synthesis from graphite using modified hummers method. XRD was selected to measure the crystal structure of graphene oxide. FTIR was used to certify the presence of oxygen containing functional groups of graphene oxide. Results: In XRD pattern, graphene oxide shows a characteristic peak at 2θ = 11.49° which shows main characteristic of graphene oxide. FTIR pattern shows the peak at 1068 cm⁻¹ confirms the presence of C-O functional groups. Conclusion: The XRD and FTIR Characterized that, graphene oxide has been formed using modified Hummers method.

Key words: Graphene oxide, nanocomposite, dental materials, XRD, FTIR.

INTRODUCTION

Graphene oxide (GO) is a graphite oxidation exfoliation product that can potentially reinforced dental nanocomposite. Graphene oxide has the same hexagonal crystal structure as graphene. Fracture strength of graphene oxide (63 GPa) is not as high as graphene (1 TPa) but it can potentially use as dental restoration additive filler because its biocompatibility nature such as, non-toxic property and lower thermal conductivity. Based on toxicity study on tooth follicle stem cell, GO proved to be less toxic compare to reduced graphene oxide and nitrogen-doped graphene.¹ ³

Good mechanical property is one of dental materials requirements beside having esthetic appearance, non-toxic behavior, doesn’t irritate oral tissue, and having natural adhesivity to tooth structure.⁴

Dental composite is one of dental restorative material that meet almost all the requirements needed for ideal tooth restoration. Unfortunately, it has lack mechanical properties because the resin base matrix. Mechanical properties increase as filler loading increase. Types of dental composite filler such as quartz, silica, glass or heavy metal ceramics are used. But it still doesn’t meet the expectancy of high mechanical properties of dental materials.⁴ ⁵

The use of graphene oxide as one of dental composite filler additive worth to study. Graphene oxide powder synthesized from graphite through Modifies Hummer’s can increase mechanical properties such as compressive strength, flexural strength, tensile strength, Young modulus, wear resistance, and also hardness of resin composite.¹ ⁶ ⁷
Microstructure analysis is very important for gaining data about self-synthesize products. Microstructure analysis tests usually done are X-Ray Diffraction (XRD) and Fourier Infrared Spectroscopy (FTIR). XRD is the most effective method to observe crystal structure of material. Diffraction method can be used to identify crystal structure of chemical mixture not from its chemical contents, it means, different mixture with the same composition can be identified. FTIR is one of infrared spectrocope, a method to characterize and observe interaction between infrared light and object.

OBJECTIVES

The objective of this study is to synthesize graphene oxide nanoparticle from graphite using modified hummers method and analyze it microstructure using FTIR and X-Ray Diffraction.

MATERIALS AND METHODS

Graphene oxide synthesized from graphite using Modified Hummer’s Method as follow. Graphite powder mix with natrium nitrate (NaNO₃) and 98% sulfate acid (H₂SO₄). The temperature of mixing volumetric tube kept on 0-5°C in ice bath for four hours. Potassium manganate added slowly and gently to keep the temperature stable on 15°C.

The mixture added by 184 mL water slowly while keep on mixed for two hours. Mixture incorporate to reflux system at 98°C for 10-15 minutes. After 10 minutes lower the temperature to 30°C until it turns brown. After 10 minutes, lower the temperature at 25°C and keep for 2 hours. Add 40 mL H₂O₂ until it turns bright yellow.

Aquades add to the beaker glass and add 200 mL prepared mixture and mix again for 1 hour. Liquid at the bottom of the beaker filtered and centrifuge with aquades for several times. Mixture kept in room temperature for three to four hours without mixing and filtered. Centrifuge with 10% HCl until neutral pH. After gelation, vacuumed at 60°C till form graphene oxide.

RESULTS

FTIR to graphite and graphene oxide particles shows infrared pattern as can be seen at picture 3.
no significant peak of certain functional groups. Different with GO that shows peaks at 3414 cm\(^{-1}\), 1726 cm\(^{-1}\), 1622 cm\(^{-1}\), 1228 cm\(^{-1}\) and 1068 cm\(^{-1}\). Peak at 3414 cm\(^{-1}\) show O-H bonding stretch from hydroxyl group of GO and absorb water molecule. Peak at 1726 cm\(^{-1}\) show C=O bonding stretch from ketone functional group and carboxylate acid of GO. Peak at 1622 cm\(^{-1}\) shows C=C bonding stretch from aromatic carbon ring. Peak at 1228 cm\(^{-1}\) show C-O bonding stretch from carboxylate acid and alcohol functional groups. Peak at 1068 cm\(^{-1}\) show C-O-C bonding from epoxide functional group. Various peak infrared spectrum of graphene oxide show that graphite has been oxidation to GO, so it shows functional group that contain oxygen. \(^{11,12}\)

XRD characterization show XRD pattern result as picture 4.

![Picture 4. XRD Pattern of Graphene Oxide](image)

Picture 4. XRD Pattern of Graphene Oxide

XRD Pattern of Graphene Oxide show highest diffraction peak at 2θ = 11,49°. This result match as literature data referent of GO XRD peak which is 10-12°. This show there is different XRD pattern between graphite that has highest diffraction peak at 2θ = 26°. Highest peak shifting from 26° to 11,49° shows distance addition between aromatic carbon layers when graphite oxidation to GO. Other than peak 2θ = 11,49° there is another peak that lower which is 2θ = 42° that indicate short range order pattern at GO layer. \(^{11,13}\)

DISCUSSION

Graphene oxide in this study synthesize using Modified Hummer’s method with pure graphite powder as raw material. Graphite is a carbon allotrope with honeycomb crystal structure that shows layers without any functional group. After oxidation using Hummer’s method, graphite will be separate layer by layer and graphene oxide has several functional groups which are carboxylate acid, alcohol, epoxide, and ketone. \(^{8}\)

There is slight color difference between graphite and graphene oxide powders. Graphite is black while graphene oxide is dark brown (picture 2). Characterization test in this study using two methods, which are Fourier Infrared Spectroscopy (FTIR) and X-Ray Diffraction. Graphite FTIR result show relatively flat infrared spectrum without any functional group. Otherwise, graphene oxide FTIR result show O-H, C=O, C=C, C=O, and C-O-C bonds that proof hydroxyl, carboxylate, ketone, and epoxide functional groups exist. These groups contain oxygen after graphite oxidation to GO. \(^{12}\)

X-Ray Diffraction (XRD) at GO powder show highest peak at 2θ = 11,49° that show peak shifting of the highest peak of graphite at 2θ = 26°. This proof distance addition between carbon aromatic layers while graphite oxidation to GO. The comparison between graphite and GO XRD pattern can be seen at picture 5.

![Picture 5. Pattern Comparison between Graphite and Graphene Oxide](image)

Picture 5. Pattern Comparison between Graphite and Graphene Oxide

CONCLUSION

Synthesize of graphene oxide (GO) powder from graphite powder can be done using Modified Hummer’s method. This can be seen by Fourier Infrared Spectroscopy (FTIR) and X-Ray Diffraction pattern.

REFERENCES