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General Chair’s Message 
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Engineering and Software Engineering.  
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Finally, as the General Chair of the Conference, I would like to express my deep appreciation 
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Committee and Reviewers who have devoted their time and energy for the success of the 
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Bayu Hendradjaya 
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Abstract— The growth of academic data size in higher 

education institutions increases rapidly. This huge volume of 
data collection from many years contains hidden knowledge, 
which can assist the improvement of education quality and 
students performance. Students’ performance is affected by 
many factors. In this study, the data used for data mining were 
students’ personal data, education data, admission data, and 
academic data. NBTree classification technique, one of data 
mining methods, was adopted to predict the performance of 
students. Several experiments were performed to discover a 
prediction model for students’ performance. The class labels of 
students’ performance were students’ status in study, graduates 
predicates, and length of study. The experiments were conducted 
with two-level classification, the university level and faculty level. 
The resulted model indicated that some attributes had significant 
influence over students’ performance.  

Keywords—classification; NBTree; student performance. 

I. INTRODUCTION 
In conjunction with the increase of huge volume of daily 

data collection, data mining has served as the tool for analyzing 
large amounts of data. Data mining has been expanded from 
not only to analyze financial data, retail industries data, 
recommender system data, and intrusion detection data, but 
also to analyze data in higher education [1][2]. 

Data mining tools have been the subjects of research in 
analyzing higher education data. Ranjan [3] proposed a 
framework to help academic institution to utilize hidden 
knowledge in historical academic data to improve education 
quality. In [4], Bhardwaj and Pal use Naïve Bayes 
classification to divide students based on their academic 
performance. Kasih, Ayub, and Susanto [5] utilize Apriori 
algorithms to predict students final passing results based on 
their performance in several subjects.  

Classification as a supervised learning technique has been 
used in predicting new data to be classified based on training 
dataset. Model resulted from classification can be utilized to 
predict future data trends. The commonly used classification 
algorithms are decision tree, and Bayesian classifier. Other 
than those, there is an NBTree classification, one of the 
classification algorithms that combines decision tree classifiers 
and Naïve Bayes classifiers [6]. 

This paper describes exploration of data mining concepts, 
especially a classification using NBTree. The objective of this 
study is to build a model using NBTree to predict students’ 
performance. Dataset used to predict students’ performance 
during their study consisted of personal data, education data, 
admission data, and academic data. 

This research is the extension from previous studies [7][8], 
the aim of which is to design data warehouse schema for 
academic data. The academic data schema consists of data mart 
schema for student and data mart schema for lecturer. The 
schema is able to become a basis for data mining analysis of 
academic data to obtain meaningful knowledge that can be 
used to improve education quality. 

II. LITERATURE STUDY 

A. Data Classification 
Data classification is defined as a predictive methods in 

data mining that is used to classify unseen data [1][9].  There 
are two main steps in data classification, namely learning step 
and classification step. In learning step, a classification model 
is built using an algorithm on a training set. Training set used 
for learning step must have class labels for given data. After a 
classifier model is built, it is utilized for predicting class labels 
for unseen data.  

NBTree is one of classification methods that was 
introduced by Ron Kohavi [6]. It is a hybrid algorithm from 
Naïve Bayes and decision tree combined. This algorithm is 
similar with decision tree except in its leaf. The decision tree 
has a branch from recursive process, and the leaves are from 
the Naïve Bayes classifier, not a node that contains final result 
from a class. 

Fig. 1 shows the pseudo code from NBTree algorithm. 
When data reach a node, five-fold cross-validation using 
Naïve Bayes will be performed on each attribute. The split of 
attributes will be considered, based on the error rate that 
resulted from Naïve Bayes classifier in that node. 

NBTree algorithm generates a decision tree that looks like 
in Fig. 2. The node in ellips is an attribute that will split 
dataset into two or more groups. The node in square is a leaf 
that classified by Naïve Bayes classifier [10]. 

This research is sponsored by DIPA Kopertis  Wilayah IV, Ministry of 
National Education and Culture of Republic of Indonesia. 
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Input: a set T of labelled instances 
Output: a decision-tree with Naïve-Bayes categorizes at the 
leaf 
Algorithm: 
1. Foreach attribute Xi, evaluate the utility u(Xi), of a split on 

attribute Xi. For continuous attributes, a threshold is also 
found at this stage. 

2. Let j = arg maxi, i.e., the attribute with the highest utility. 
3. If ui is not significantly better than the utility of the current 

node, create a Naïve-bayes Classifier for the current node 
and return. 

4. Partition T according to the test on Xj. If Xj is continuous, a 
threshold split is used; if Xj is discrete, a multi-way split is 
made for all possible values. 

5. Foreach child, call the algorithm recursively on the portion 
of T that matches the test leading to the child. 

 
Fig. 1. NBTree pseudo code by Kohavi [6] 

For each leaf in NBTree, there is a Naïve Bayes classifier 
described in Table I. The first column shows attributes and 
nominal values for each attribute. The other columns show 
class values and frequency counts (FC) of nominal values or 
parameters of normal distributions for numeric attributes [10].   

 
Fig. 2. Decision Tree Example for NBTree  

To derive rules from a decision tree, one rule is generated 
for each path from the root to a leaf node. The rule antecedent 
is formed from each splitting condition along a given path, 
and the rule consequent is the class assigned by the leaf 
[1][10]. 

TABLE I.  NAÏVE BAYES CLASSIFIER 

Atr – i Class = 1 Class = 2 … Class = m 
val-1 FC11 FC21  FCm1 
val-2 FC12 FC22  FCm2 

…     
val-n FC1n FC2n  FCmn 

B. Evaluation 
The evaluation was performed by building model in the 

classification with training data and test data. Training data was 
processed using the classification algorithm to build a 
classifier. To measure the performance of resulted classifier, 
test data was used to calculate the error rates. Training data and 
test data must be disjointed to ensure credibility of classifier 
evaluation [10]. 

The problem in the employed evaluation method is the 
availability of sufficient data set to be divided as training data 
and test data. This research employed the stratified tenfold 

cross validation for the evaluation to overcome the limitation 
of data availability [10]. To implement this, the data were 
divided into ten parts randomly in nearly the same size. Each 
part was held out in turn and the nine-tenths were trained using 
classification algorithms. Afterward, the error rates were 
calculated. Thereby, the algorithm was executed ten times on 
different training sets. At last, the overall error rate was 
resulted from the average of ten error estimates.     

III. METHODOLOGY 
The research methodology used in this study consists of 

three steps as follow:  

A. Data Preparation  
This data set was built from student data mart schema that 

resulted from prior studies [7][8] as a data resource. The data 
set contains students’ data from two faculties of a university.  
This study used two kinds of data set, the first was active 
students’ data set and the second was graduates data set. 
Preprocessing was performed on raw data by removing 
outliers, resolving inconsistencies, and transforming data to 
obtain qualify data that ready for classification. 

B. Data selection and transformation 
As described in Table II, a group of attributes has been 

selected for active students’ classification. These attributes 
consist of (a) personal information such as: gender and students 
home town, (b) education information such as: high school 
major, (c) admission information such as: type of admission 
phase and admission test score, (d) academic information such 
as: faculty, department and GPA. All attributes were utilized to 
predict students’ status to be active (1) or drop out (2). 

TABLE II.  ACTIVE STUDENTS DATA SET 

Attribute 
name Description Possible Values 

Gender Students Gender [M=Male, F=Female]

Faculty Students Faculty [E=Faculty E, T= Faculty T]

Department Students Department [T=Department T, S= 
Department  S] 

Admission Type of admission 
phase 

[A1= Admission Phase 1,   A2 
= Admission Phase 2] 

Test Score Admission test score [1 : excellent, 2 : good, 3 : 
fair, 4 : acceptable] 

City Students home town [A = Bandung, B = outside 
Bandung] 

Major High school major [A = major A, S = major S]

GPA Grade point average [1 : GPA = below, 2: GPA = 
good,  3 : GPA = excellent] 

Status Status of student [1 = active, 2 = drop out]

For graduates’ classification, a group of attributes has been 
selected as described in Table III. These attributes consist of 
(a) personal information such as: gender and students home 
town, (b) education information such as: high school major, (c) 
admission information such as: type of admission phase and 
admission test score, (d) academic information such as: faculty, 
department, and total of credit. These attributes were used for 
two kind of classification. The first classification is predicting 
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students GPA to be satisfactory (1), excellent (2), or cum 
laude(3). The second classification is predicting length of 
students study to be on time (1), or late (2).  

 
TABLE III.  GRADUATES DATA SET 

 Attribute 
name Description Possible Values 

Gender  Gender [M=Male, F=Female]

Faculty  Faculty [E=Faculty E, T= Faculty T]

Department Students Department [T=Department T, S= 
Department  S] 

Admission Type of admission 
phase 

[A1= Admission Phase 1,   A2 
= Admission Phase 2] 

Test Score Admission test score [1 : excellent, 2 : good, 3 : 
fair, 4 : acceptable] 

City Students home town [A = Bandung, B = outside 
Bandung] 

Major High school major [A = major A, S = major S]

Credit Credit total [C1 : Credit  = 144,    C2 : 
Credit > 144] 

GPA Grade point average 
[1 :  GPA = satisfactory, 2 : 
GPA = excellent,  3 :  GPA = 
cum laude] 

LST Length of study [1 : on time  (LST<= 4),  2 : 
late (LST > 4)] 

 

C. Classification using NBTree 
This study performed NBTree classification on active 

students’ data set and graduates data set using WEKA as a data 
mining toolkit [10]. For each data set, the classification was 
done at university level and faculty level. Data set at the 
university level was represented by data samples from two 
faculties. Data set at the faculty level was represented by data 
samples from faculty T.  

In this study, the proposed model for prediction students’ 
performance consisted of two parts. The first predicted 
students’ performance through students’ status, active or drop 
out. The second utilized graduates’ GPA  and LST to predict 
students’performance. 

Classification for active students’ data set used students’ 
status attribute as the class.  The attributes used for students’ 
status prediction at university level consisted of Gender, 
Faculty, Admission, Test Score, City, Major, and GPA. At 
faculty level, we used Gender, Department, Admission, Test 
Score, City, Major, and GPA for prediction. 

 For graduates’ data set, this study executed two kinds of 
classification. The first used GPA as the class attribute, and the 
second used LST as the class attribute. For both prediction, we 
used the same dataset, which at university level consisted of 
Gender, Faculty, Admission, Test Score, City, Major, and 
Credit. At faculty level, we used Gender, Department, 
Admission, Test Score, City, Major, and Credit. 

IV. EXPERIMENT : THE RESULT AND 
INTERPRETATION 

After the data had been prepared, the classification model 
construction was performed. In each of these experiments 
explained below, a tree was built using NBTree technique. In 
classification for university level, attribute faculty was used 
instead of attribute department. Attribute department was used 
in classification for faculty level. Data set for faculty T was 
used in classification for faculty level. 

To validate the performance of each experiment, this study 
utilized ten fold cross validation because of the limitation of 
data availability.  

A. Experiment-1(E1) : Active Students Data set  
Active students’ data set in Table II with Status as the class 

label for experiment-1 in university level (E1-U) consisted of 
2687 instances.  Fig. 3 shows the tree with ten leaves resulted 
from NBTree classification for the data set. The accuracy 
percentage for predicting performance in E1-U is 81.46%. 

 
Fig. 3. NBTree for E1-U  

The correct classified data from E1-U consisted of 2145 
instances classified as active and 44 instances classified as drop 
out. Based on the correct classified data in the NBTree in Fig. 
3, the meaningful rules generated from the tree are shown in 
Table IV. 

Table IV indicates that Gender attribute was the most 
affective attribute in determining active students at university 
level.  Generally, Male students have better performance than 
Female. But Female students in faculty T and came from 
Bandung have better performance than Male. So also the 
students in Faculty T, came from outside Bandung, and have 
good GPA or excellent GPA.  

Active students’ data set in Table II with Status as the class 
label for experiment-1 in faculty level (E1-F) consists of 875 
instances.  Fig. 4 shows the tree with seven leaves resulted 
from NBTree classification for the data set. The accuracy 
percentage for predicting performance in E1-F is 77.14%.  

The correct classified data from E1-F consisted of 649 
instances classified as active and 26 instances classified as drop 
out.  Based on the correct classified data in the tree in Fig. 4, 
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the meaningful rules generated from the tree are shown in 
Table V. 

TABLE IV.  RULES FOR ACTIVE STUDENTS (E1-U) 

 Rule  

# 
Rule Premise 

Percentages of Instances

Active Drop Out

1 IF Gender = M  97.70% 2.30% 
2 IF Gender = F and Faculty = E 98.47% 1.53% 

3 IF Gender = F and Faculty = T 
and City = B and GPA = 1 75.00% 25.00% 

4 IF Gender = F and Faculty = T 
and City = A 100% 0% 

5 
IF Gender = F and Faculty = T 
and City = B and (GPA = 2 or 
GPA = 3) 

100% 0% 

 

 
Fig. 4. NBTree for E1-F  

Table V indicates that GPA attribute was the most affective 
attribute in determining active students in faculty T.  Students 
with good or excellent GPA have better performance than 
below GPA. For students with below GPA, Admission, City, 
and Gender attributes determined whether they will survive to 
finish their study. 

B. Experiment-2(E2) : Graduates Data set with GPA as the 
Class 
Graduates data set in Table III with GPA as the class label 

for experiment-2 in university level (E2-U) consisted of 1209 
instances.  Fig. 5 shows the tree with three leaves resulted from 
NBTree classification for the data set. The accuracy percentage 
for predicting performance in E2-U is 68.74%. 

The correct classified data from E2-U consisted of 498 
instances classified as satisfactory GPA, 263 instances 
classified as excellent GPA, and 70 instances classified as cum 
laude GPA. Based on the correct classified data in the tree in 
Fig. 5, the meaningful rules generated from the tree  are shown 
in Table VI. 

Table VI shows that when the Credit was equal 144, there 
was 66.80% satisfactory GPA. However, when the Credit was 

above 144, the satisfactory GPA increased to 93.62%, 
especially in faculty E. In faculty T, when the Credit was above 
144, the GPA was dominated by excellent GPAs. 

TABLE V.  RULES FOR ACTIVE STUDENTS (E1-F) 

 Rule 

# 
Rule Premise 

Percentages of 
Instances 

Active Drop Out

1 IF GPA = 1 and Admission = E1 
and Department = T  73.85% 26.15% 

2 IF GPA = 1 and Admission = E1 
and Department = S 64.71% 35.29% 

3 IF GPA = 1 and Admission = E2 
and City = B and Gender = M 94.34% 5.66% 

4 IF GPA =1 and Admission = E2 
and City = A 100% 0% 

5 IF GPA =1 and Admission = E2 
and City = B and Gender = F 100% 0% 

6 IF GPA = 2 or GPA = 3 100% 0% 

 

Fig. 5. NBTree for E2-U 

Graduates data set in Table III with GPA as the class for 
experiment-2 in faculty level (E2-F) consisted of 437 instances.  
NBTree classification for the data set resulted in no tree. The 
accuracy percentage for predicting performance in E2 in 
faculty level is 63.84 %. 

 
TABLE VI.  RULES FOR GRADUATES – CLASS GPA (E2-U) 

Rule 

# 
Rule Premise 

Percentage of Instances

Satisfac
tory 

Excelle
nt 

Cum 
Laude 

1 IF Credit = C1  66.80% 29.46% 3.74%

2 IF Credit = C2 and Faculty = E  93.62% 6.38% 0%

3 IF Credit = C2 and Faculty = T   0% 67.70% 32.30%

C. Experiment-3(E3) : Graduates Data set with LST as the 
Class 
Graduates data set in Table III with LST as the class for 

experiment-3 in university level (E3-U) consists of 1209 
instances.  Fig. 6 shows tree with 23 leaves resulted from 
NBTree classification for the data set. The accuracy percentage 
for predicting performance in E3-U is 69.70%. 
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Fig. 6. NBTree for E3-U 

The correct classified data in E3-U consisted of 315 
instances classified as on time, and 520 instances classified as 
late.  Based on the correct classified data in the tree in Fig. 6, 
the meaningful rules generated from the tree are shown in 
Table VII. 

Table VII indicates that students will be graduated on time 
if they have excellent Test Score. Based on length of study, 
graduates in faculty E have higher performance than graduates 
in faculty T, especially if they have good Test Score.   

Graduates data set in Table III with LST as the class for 
experiment-3 in faculty level (E3-F) consists of 437 instances.  
Fig. 7 shows tree with 28 leaves resulted from NBTree 
classification for the data set. The accuracy percentage for 
predicting performance in E3-F is 61.56%. 

The correct classified data in E3-F consisted of 192 
instances classified as on time, and 77 instances classified as 
late.  Based on the correct classified data in the tree in Fig. 7, 
the meaningful rules generated from the tree are shown in 
Table VIII. 

Table VIII indicates that Major attribute was the most 
affective attribute in determining length of study in faculty T. 
Students from Major A have higher performance than students 
from Major S.  Whenever Department is taken into 
consideration, graduates from Department T have better 
performance than from Department S. 

V. CONCLUSION 
This paper focused on building a classification model to 

predict students’ performance. To achieve the objective, many 
attributes has been tested, and some of them were found as 
influential attributes to performance prediction. 

It can be concluded based on the classification model 
resulted from the experiments that: 

1) Prediction at the university level for active students 
indicated that Gender attribute had significant 
influence to determine whether students will be survive 
to finish their study. 

 

 

TABLE VII.  RULES FOR GRADUATES  – CLASS LST (E3-U) 

 Rule  

# 
Rule Premise 

Percentage of 
Instances 

On Time Late

1 IF Test Score = 1    100% 0%

2 IF Test Score = 2 and 
Faculty = E and Major = A 100% 0% 

3 
IF Test Score = 2 and 
Faculty = E and Admission 
= A2 and Major = S 

100% 0% 

4 
IF Test Score = 2 and 
Faculty = T and Admission 
= E1 

70.73% 29.27% 

5 
IF Test Score = 2 and 
Faculty = T and Admission 
= E2 

66.67% 33.33% 

6 
IF Test Score = 3 and 
Admission = A1 and City = 
B and Gender = M and 
Major = A 

66.67% 33.33% 

7 
IF Test Score = 3 and 
Admission = A1 and City = 
A and  Major = S and Credit 
= C1 

100% 0% 

 

2) Prediction at the university level for graduates 
indicated that : 

a. Credit attribute had significant effect to 
identify graduates GPA. 

b. Test Score attribute had significant effect to 
determine graduates length of study.   

3) Prediction  at the faculty level for active students 
indicated that GPA attribute had significant influence 
to determine whether students will be survive to finish 
their study. 

4) Prediction at the faculty level for graduates indicated 
that Test Score attribute had significant effect to 
determine graduates length of study in faculty T. 
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Fig. 7. NBTree for E3-F 

TABLE VIII.  RULES FOR GRADUATE – CLASS LST (E3-F) 

Rule  

# 
Rule Premise 

Percentage of 
instances 

On 
Time Late 

1 IF Major = A and Gender = F 
and Credit=C1  

100% 0% 

2 
IF Major = A and Gender = F 
and Department = S and 
Credit=C2 

100% 0% 

3 
IF Major = A and Gender = F 
and City = A and Department = 
T and Credit=C2 

83.33% 16.67% 

4 IF Major = A and Gender = M 
and City=A and Department=S 71.43% 28.57% 

5 IF Major = A and Gender = M 
and City=B and Department=S 80% 20% 

6 IF Major = A and Gender = M 
and City=B and Department=T 

100% 0% 

7 
IF Major = A and Gender = M 
and City=A and Department=T 
and Admission = A2 

100% 0% 

8 
IF Major = A and Gender = M 
and City=A and Department=T 
and Admission = A1 and Credit 
= C1 

100% 0% 

9 
IF Major = A and Gender = M 
and City=A and Department=T 
and Admission = A1 and Credit 
= C2 and Test Score=1 

100% 0% 

10 IF Major = S and  City=A and 
Department=S and Credit=C2 62.50% 37.50% 

11 IF Major = S and  Gender = M 
and City=B and  Credit=C1 

100% 0% 

12 
IF Major = S and  City=A and 
Credit=C1 and Test Score = 1 or 
2 or 3 

100% 0% 

5) Classification model to predict students’ performance 
was resulted as a set of rules, which can be used to 
predict the new student performance.   

 

 

Further research may collect more proper data from several 
higher education institutions to generate a correct model for 
students’ performance. 
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