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Abstract—Low-level approach is a novel way to detect source
code plagiarism. Such approach is proven to be effective when
compared to baseline approach (i.e., an approach which relies
on source code token subsequence matching) in controlled en-
vironment. We evaluate the effectiveness of state of the art in
low-level approach based on Faidhi & Robinson’s plagiarism
level taxonomy; real plagiarism cases are employed as dataset in
this work. Our evaluation shows that state of the art in low-level
approach is effective to handle most plagiarism attacks. Further,
it also outperforms its predecessor and baseline approach in most
plagiarism levels.

Keywords—source code plagiarism detection, low-level language,
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I. INTRODUCTION

Source code plagiarism is an act of reusing others’ code
without acknowledging the original author(s) [1]. It is an
emerging issue among undergraduate students in Computer
Science (CS); since most assignments in CS are related to
programming and they are relatively easy to be replicated
[2]. In addition, source code plagiarism is difficult to be
detected and the cases are not limited among students with
poor academic performance only [3]. In response to this issue,
a number of plagiarism detection systems have been proposed
[4]. These systems are expected to handle numerous source
codes and detect complex plagiarism cases efficiently with
accurate result.

One recent work in source code plagiarism is by adopting
low-level structure-based approach. This technique relies on
low-level representation to measure similarity in source code
[5]. Such representation could result to a better accuracy
compared to baseline approach (i.e., an approach which deter-
mines similarity based on source code subsequence matching)
since there are no syntactic-sugar forms and delimiter tokens
involved [2], [5], [6]. One comprehensive work which imple-
ment low-level structure-based approach is presented in [2];
a wide range of plagiarism aspects in Java source code are
covered in the work.

This paper serves as an extension of the work presented in
[2], by providing an in-depth evaluation toward the proposed

approach on real plagiarism cases. A plagiarism taxonomy
proposed in [7] is adopted in this work. Such taxonomy has
been widely accepted in the field of source code plagiarism
detection [8]–[12].

II. RELATED WORKS

Source code plagiarism detection techniques can be classi-
fied into three categories: attribute-based, structure-based, and
hybrid approach [2], [13]. Attribute-based approach measures
similarity based on key properties extracted from source codes
(e.g., the number of identifier and line of code). Structure-
based approach quantifies similarity based on the structure of
the code (e.g., token subsequence). Hybrid approach combines
the former two categories.

This paper specifically focuses on low-level structure-based
approach where similarity in source code is measured based on
the structure of low-level tokens (i.e., tokens extracted from
compiled form of given source code). It has been adopted
in [2], [3], [5], [6], [14]–[16] and designed to handle either
.NET or Java programming language. The works on .NET pro-
gramming language rely on Common Intermediate Language
(i.e., .NET’s low-level representation) where several different
techniques to measure similarity in the tokens were adopted.
Levenstein distance was applied in [14]; whereas Running-
Karp-Rabin Greedy-String-Tiling algorithm and adaptive lo-
cal alignment were adopted in [15] and [3] respectively. In
contrast, the works on Java programming language rely on
bytecodes (i.e., Java’s low-level representation) by considering
various programming features [2], [5], [6], [16]. A work
proposed in [16], at some extent, becomes a baseline for other
works on Java programming language.

A work proposed in [5] is extended from [16] by incorporat-
ing four additional features: instruction generalization, instruc-
tion reinterpretation, method-based comparison, and modified
method linearization. The first two features omit over-technical
detail in the bytecode token sequence by replacing several
tokens with a more-simplified form (e.g., switch-case token
sequence is replaced with a standard goto-based sequence).
The last two features reduce the number of false-positive
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tokens by considering token context. Instead of comparing
the whole token sequence at once, it compares the sequences
locally per method pair wherein each method invocation is
linearized according to the content of the invoked method.

Considering the benefits of [5], works proposed in [6]
and [2] extend that work. The former work incorporates a
naive solution for abstract method linearization; it considers
the content of all candidate methods as a replacement of an
abstract method invocation. The latter work incorporates three
additional features: flow-based token weighting, argument
removal heuristic, and invoked method removal. The first
two features contribute to the effectiveness of the proposed
approach by generating more accurate similarity result. Flow-
based token weighting is used to differentiate similar tokens
with different scope while argument removal heuristic is used
to remove remaining arguments at method linearization phase.
In addition, invoked method removal improves the efficiency
(i.e., reduces processing time) by excluding the content of
invoked methods from comparison.

Works proposed in [5], [6], and [2] use a source-code-
token approach as comparison baseline. Such approach works
in threefold: converts both source codes into lexical token
sequences, removes the comments, and compares resulted
token sequences using maximum matching similarity [9] with
Running-Karp-Rabin Greedy-String-Tiling algorithm [17]. Ac-
cording to these works, low-level approach outperforms the
baseline approach in terms of effectiveness. Compilation phase
(which is exclusively conducted by low-level approach to
translate source code to low-level tokens) generates three
benefits:

1) Resilient to comment, whitespace, and delimiter mod-
ification; tokens related to these modifications are ex-
cluded.

2) Resilient to local variable renaming and syntactic-based
modification; local variables are automatically renamed
and most syntactic-sugar forms will be translated to their
original form.

3) Generate less mismatched tokens; in terms of instruction
representation, low-level token sequence is more concise
compared to source code token sequence.

In the field of source code plagiarism detection, plagiarism
taxonomy [7] is commonly used as an evaluation metric. Such
metric has been implemented in number of studies [3], [5],
[8]–[12]. Difficulty level with a range from level 1 to level 6
is applied in the metric to represent a spectrum of difficulty
from the easiest to the hardest one; where signature attacks
from each level are inclusive toward higher level categories.
Table I presents the attack signature for each level including
its example.

III. METHODOLOGY
The implementation of Faidhi & Robinson’s taxonomy [7]

for evaluation in most low-level source code plagiarism studies
[2], [3], [5] are limited to a controlled environment, where
each plagiarism case contains only a single plagiarism attack.
As a consequence, those studies may suffer from lack of real

life application, considering such controlled dataset excludes
combined attacks (which are commonly found in real life). In
contrast to those works, we utilize real plagiarism cases (cap-
tured from undergraduate students without limiting involved
plagiarism attacks) as a dataset in our exploration. Such dataset
would enable us to analyze the impact of low-level approach
toward combined attacks and unexpected cases. Our dataset
is filtered from raw data proposed in [5] (where plagiarism
cases have been mapped into Faidhi & Robinson’s taxonomy
[7], based on the highest plagiarism attack level included)
by manually removing misclassified cases. It consists of 355
plagiarism cases with each plagiarism level covers between 56
and 63 cases.

Three different approaches are considered in our evalua-
tion: Extended Low-Level Approach (Ext-LLA), Low-Level
Approach (LLA), and Source-code-Token Approach (STA).
Ext-LLA [2] is a state of the art in low-level structure-based
approach which impact will be measured in this study. LLA
[5] is the predecessor of Ext-LLA; its result will be compared
to Ext-LLA’s for measuring the impact of Ext-LLA’s signature
features. STA is a comparison baseline approach used in [2],
[5], [6]; its result will be compared to Ext-LLA’s for measuring
the impact of low-level representation.

In general, our methodology consists of seven evaluation
phases (as illustrated in Fig. 1). The first six phases incorporate
three sub-phases: accuracy measurement, general analysis, and
result comparison. Accuracy measurement is conducted by
generating Reversed number of Mismatched Token (RMT) for
each approach per case from our dataset. It is calculated by
negating the number of Mismatched Token (MT) from both
token sequences (A and B), resulting a non-positive integer
which is ranged from −∞ to 0 (as formulated in (1)).

RMT (A,B) = −1 ∗MT (A,B) (1)

It is important to note that RMT is preferred as our
effectiveness metric instead of normalized similarity (which
is commonly used in the works of source code plagiarism

Fig. 1. Evaluation methodology. The first six phases evaluate Ext-LLA’s
effectiveness locally per plagiarism level while the last phase evaluates its
effectiveness in general.
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TABLE I
PLAGIARISM LEVELS DEFINED IN [7]

Level Attack Signatures Example
1 Comment and whitespace modification Removing all comments from given source code
2 Identifier modification (i.e., changing lexical name from one to another) Renaming all local variables

3 Component declaration relocation Moving all variable declarations to the beginning of main
method

4 Method structure change Replacing all method invocations with their respective invoked-
method’s content

5 Program statement replacement (i.e., changing statements with other
statements that share similar semantic yet different syntactic form) Replacing while statement with for statement

6 Logic change (i.e., changing statements with other statements that share
no similarity in terms of syntactic and semantic form)

Replacing an iterative traversal with the recursive one that
generates similar result

detection [8], [9]) since RMT is not affected by the number of
involved token. The number of involved token may obfuscate
the result considering source code always has more tokens
when compared to low-level code, even though both codes
refer to similar semantic [3], [5]. In fact, RMT has been
used in previous works about low-level approach [2], [5], [6]
despite the use of different terminology (we use RMT as our
terminology since we would argue it is the most appropriate
name that represents how it works).

General analysis is conducted by analyzing the character-
istics of Ext-LLA when handling plagiarism attacks on given
level. Further, result comparison is conducted by comparing
the trends between Ext-LLA and other two approaches toward
given plagiarism level.

The 7th phase is conducted in two sub-phases: ranking
generation and result comparison. A rank is assigned for each
approach per case in ranking generation sub-phase, where a
high rank implies high RMT. It is important to note that a
particular rank is not exclusively assigned to one approach,
considering two or more approaches may yield a same RMT
value. Further, result comparison is conducted by comparing
the trends between involved approaches from ranking perspec-
tive. Both phases will be conducted for the whole dataset (i.e.,
a merged form of six level-based dataset as illustrated in Fig.
1).

IV. RESULT AND DISCUSSION

A. Evaluation Toward Level-1 Plagiarism Attacks

Based on observation toward our dataset, we identified 60
plagiarism cases related to level-1 plagiarism attacks (which is
about comment & whitespace modification). Having comment
and whitespace tokens excluded at compilation phase, level-1
attacks in our dataset are accurately detected (i.e., zero RMT
for all level-1 cases) with Ext-LLA. Therefore, we can assure
that Ext-LLA is resistible to level-1 plagiarism attacks.

In comparison to STA, Ext-LLA generates higher RMT in
most cases even though both approaches exclude comment
and whitespace tokens. Further investigation shows that STA’s
low result is caused by the existence of IDE- and ownership-
related modification. IDE-related modification refers to a
modification that is automatically generated when the code is
imported to other IDE (e.g., automatically-generated package
name) whereas ownership-related modification refers to a

modification that is required to claim the ownership for given
code (e.g., renaming main class name with student ID). Both
modifications generate a slight difference on source code
level, resulting lower RMT for STA. However, since both
modifications are out of level-1 attack scope, it cannot be
stated that Ext-LLA outperforms STA.

In contrast to STA, LLA generates a fairly similar result
to Ext-LLA in all cases; comment and whitespace tokens are
removed during compilation phase in both approaches.

B. Evaluation Toward Level-2 Plagiarism Attacks

From our dataset, we identified 56 plagiarism cases related
to level-2 plagiarism attacks. We also found that identifier
modification (a level-2 signature attack) in our dataset occurs
either in the form of local variable or method name mod-
ification. Ext-LLA, at some extent, is able to handle given
attacks accurately; it generates zero RMT for all level-2 cases.
Such performance is achieved due to Bytecode’s local variable
renaming (which renames all local variables with technical
names based on their first occurrence) and method lineariza-
tion (which removes method name as a result of linearization
process). These mechanisms handles both local variable and
method name modification respectively. Therefore, we can
assure that Ext-LLA is also resistible to level-2 plagiarism
attacks.

STA compares source code token based on its mnemonic
and considers each occurrence of renamed identifier as a
mismatch; it is in contrast to Ext-LLA which does not di-
rectly compare source code token mnemonic. Pre-processing
mechanisms are applied in Ext-LLA to mitigate the number of
mismatches in advance. In our evaluation, we found Ext-LLA
generates higher RMT in all cases compared to STA.

Both LLA and Ext-LLA handle level-2 plagiarism in a
similar fashion. Therefore, it is expected that they both yield
a similar result in our evaluation study.

C. Evaluation Toward Level-3 Plagiarism Attacks

There are 57 plagiarism cases related to level-3 plagiarism
attacks identified from our dataset. Level-3 attacks occur in
the form of relocation in either variable declaration (i.e.,
relocating variable declaration within the same scope or to a
larger scope) or method declaration (i.e., restructuring method
declaration). In general, Ext-LLA is resistible to those attacks
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except on two conditions: relocating variable declaration from
local to class scope and relocating variable declaration from
a looping body or a branching body to its larger scope.
The former condition relocates variable declaration from main
method to implicit constructor, therefore breaking down these
methods’ matched sequences to shorter sequences that are
mostly undetected (since their length is below Ext-LLA’s
minimum matching length). The latter condition alters the
token weight of a relocated variable. Ext-LLA is sensitive to
changes in token weight; it will assume that two tokens are
within two different scopes and they can not be considered
matched. In our evaluation study, Ext-LLA yields zero RMT
for 46 out of 57 cases.

Evaluation toward our level-3 dataset results to higher RMT
in Ext-LLA compared to in STA. However, from our inves-
tigation, we discovered that component declaration relocation
does not have significant effect on STA. Low RMT in STA is
more likely affected by identifier modification (one of level-2
signature attacks). Such side effect is reasonable considering
level-3 attacks also inherently covers plagiarism attacks in
lower levels.

While handling level-3 attacks, both LLA and Ext-LLA
yield similar result in most cases. They only perform differ-
ently in the case where a variable declaration is relocated from
loop body to its outer scope. In Ext-LLA, relocated variable
declaration is considered as mismatched tokens due to its
modified scope. Therefore it is expected that, while handling
level-3 attacks, Ext-LLA is slightly less effective than LLA.

D. Evaluation Toward Level-4 Plagiarism Attacks

There are 60 plagiarism cases in our dataset which cover
level-4 attacks. Such attacks are occurred in the form of
replacing method invocation with its respective content or
encapsulating program statements as a method. The former
form may omit some local variable declarations by replacing
them with existing variables on the invoker method; the latter
form may introduce some local variable declarations on newly-
created method to smoothly transfer some values from invoker
method. In our evaluation, we found that Ext-LLA generates a
significantly higher RMT than STA (i.e., in average Ext-LLA
generates -3 RMT per case while STA generates -14 RMT).
Apart from the high occurrences of local variable modification,
such significant performance is also due to Ext-LLA’s token
representation (which is more compact than STA’s).

In contrast to LLA, Ext-LLA is exclusively featured
with argument removal heuristic (which removes argument-
preparation tokens for each method invocation). Such heuristic
reduces the number of mismatched tokens considering most
method invocations in our dataset are featured with argument-
preparation tokens. It is not surprising that, in our evaluation
study, Ext-LLA results to better performance compared to
LLA; it generates higher RMT in 33 of 60 cases.

E. Evaluation Toward Level-5 Plagiarism Attacks

From our dataset, we discovered 59 plagiarism cases re-
lated to level-5 plagiarism attacks. We also identified two

forms of program statement replacement (i.e., level-5 signature
attack) in our dataset: replacement with exactly-similar and
approximately-similar semantic. In exactly-similar semantic,
the statement replacement yields similar behavior to the
original one on all possible occasions (e.g., replacing while
traversal with for traversal). Meanwhile, in approximately-
similar semantic, the statement replacement only yields similar
behavior at least on one occasion (e.g., replacing while traver-
sal with do-while traversal).

In our evaluation study on level-5 attacks, we found that
Ext-LLA yields higher RMT compared to STA. In average,
Ext-LLA generates -4 RMT per case while STA generates -
20 RMT. Replacing and replaced tokens on bytecode level is
more uniform to each other when compared to the source code
level; such uniformness favors Ext-LLA to outperform STA.

We also found that Ext-LLA outperforms LLA in 30
cases. Having argument removal heuristic on board, Ext-LLA
manages to exclude some mismatched tokens from argument-
preparation tokens. In addition, invoked method removal em-
ployed by Ext-LLA also manages to exclude some mismatched
tokens from the content of the invoked methods. Ext-LLA is
only underperformed by LLA in one case where a conversion
from while to do-while traversal is involved. In contrast to
LLA, Ext-LLA considers all tokens from both traversal bodies
as mismatched since these traversals generate different control
flow path.

F. Evaluation Toward Level-6 Plagiarism Attacks

From our dataset, there are 63 cases which comply to
level-6 plagiarism attacks. Logic change (which is level-6
signature attack) is difficult to be detected using Ext-LLA; in
most occasions, different logics are represented with different
bytecodes and token scopes. Nevertheless, in our evaluation
study, we found that Ext-LLA still generates higher RMT than
STA. In average, Ext-LLA generates -8 RMT per case while
STA generates -25 RMT.

Our evaluation study also shows that Ext-LLA outperforms
LLA in 28 cases; thanks to argument removal heuristic and
invoked method removal (both mechanisms mitigate the
number of mismatched tokens in similar fashion as in level-5
attacks). Ext-LLA is underperformed by LLA in six cases
where the modification of control flow and the existence of
operation in method arguments are involved. On the one
hand, modification in control flow generates lower RMT on
Ext-LLA since more mismatched tokens will be generated as
a result of Ext-LLA’s flow-based token weighting. However,
we would argue that Ext-LLA’s result in these cases is more
sensible than LLA’s; tokens with different scope should not
be considered as similar to each other. On the other hand, the
existence of operation in method arguments generates lower
RMT on Ext-LLA; argument removal heuristic applied in
Ext-LLA cannot correctly handle operation that is implicitly
conducted on method arguments.
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Fig. 2. Ranking distribution toward the whole dataset; The color of each bar
represents a rank; horizontal axis represents involved approaches; and vertical
axis represents the number of cases. To assign a rank, given approach will
be compared to each other per case in terms of RMT, where higher RMT
refers to higher rank; if several approaches generate similar RMT, then these
approaches will be assigned with the same rank.

G. Evaluation Toward the Whole Dataset

The ranking distribution of Ext-LLA, LLA, and STA toward
the whole dataset can be seen in Fig. 2. Two findings can be
highlighted from our evaluation study. First, Ext-LLA yields
the best performance, followed by LLA and STA. Ext-LLA
generates the highest RMT on 347 out of 355 cases. Sec-
ond, three specific features (i.e., flow-based token weighting,
argument removal heuristic, and invoked method removal)
employed by Ext-LLA are able to enhance the effectiveness
of low-level approach; Ext-LLA generates the highest RMT
on more cases than LLA.

V. CONCLUSION AND FUTURE WORK

In this paper, a comprehensive evaluation on state of the
art in low-level plagiarism detection approach [2] toward
plagiarism level taxonomy (with real plagiarism cases) is
presented. Five findings can be highlighted from our evaluation
study. First, the approach is resistible to the first two plagiarism
attack levels. Second, RMT resulted from such approach is
reversely proportional to increasing plagiarism level on level-
3 to level-6 attack category. Third, the approach outperforms
its predecessor and source-code-token approach. Fourth, the
approach is more sensitive to detect false-positive result; it
differentiates tokens not only based on their mnemonic but
also their scope. Fifth, signature features proposed in such
approach enhance the effectiveness of low-level approach.

For future work, we plan to extend state of the art in low-
level approach [2] for handling source code plagiarism in
object-oriented environment. Different with works proposed
in [6], [18], we will expand such approach by incorporating
attribute-based approach.
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