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Design of Environmental Sensor Networks
Using Evolutionary Algorithms

Ferry Susanto, Setia Budi, Paulo de Souza Jr., Ulrich Engelke, and Jing He

Abstract—An evolutionary algorithm (EA)-assisted spatial sam-
pling methodology is proposed to assist decision makers in sen-
sor network (SN) deployments. We incorporated an interpolation
technique with leave-one-out cross-validation (LOOCV) to assess
the representativeness of a particular SN design. For the validation
of our method, we utilized Tasmania’s South Esk Hydrological
Model developed by the Commonwealth Scientific and Industrial
Research Organisation, which includes a range of environmental
variables describing the landscape. We demonstrated that our
proposed methodology is capable of assisting in the initial design
of SN deployment. Ordinary Kriging is shown to be the best suited
spatial interpolation algorithm for the EA’s LOOCV under the
current empirical study.

Index Terms—Evolutionary algorithm (EA), inverse distance
weighting (IDW), leave-one-out cross-validation (LOOCV), mul-
tiobjective, optimization, ordinary Kriging (OK), sensor network
(SN) deployment, spatial data interpolation, spatial sampling, thin
plate spline (TPS).

I. INTRODUCTION

D EPLOYING sensor networks (SNs) from ground–up has
never been a simple task without knowledge of historical

environmental information within the landscape. The random
distribution of nodes does not necessarily establish a fit-to-
purpose network. While adding more sensor nodes within the
region of interest (ROI) is likely to enhance the data usage
and robustness of the SN, it would also introduce undesirable
increase in both deployment and maintenance costs. Careful
design is therefore a critical process prior to the deployment
of SN. It is one of the most significant factors in ensuring that
the network delivers fit-for-purpose data in a cost-effective way.
Two fundamental questions arise while planning the deploy-
ment of SN: How many sensor nodes have to be deployed to
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meet certain application purposes and how should the nodes be
deployed within the ROI [1].

The optimization of SN deployment is a process of deter-
mining the best possible locations of sensor nodes within the
area under study (spatial sampling method). Mamun provided
detailed descriptions of existing topologies in wireless sensor
networks, including a comparative discussion of performance
of different topologies [2]. As an overview, heuristic-based
approaches (mathematical programming) have been extensively
utilized to address such NP-hard problem [3], for instance, evolu-
tionary algorithms (EAs) [4], [5], swarm algorithms [6], linear
programming [7], spatial simulated annealing [8]–[11], and
signal processing technique (e.g., wavelet [12]). However, the
aforementioned literatures are mainly focusing on the following
aspects: coverage of sensing area, network connectivity, and
energy consumption. Apart from that, other factors such as cost,
spatial analysis, and data reconstruction have been described
and addressed in [13] and [14].

In this letter, we present a method to deploy an SN that is
able to represent a certain environmental variable of the entire
ROI, given a certain number of nodes. Section II describes in
detail the problem to be addressed in this letter, followed by a
methodology of the deployment strategy in Section III. Exper-
imental simulation results and discussion are demonstrated in
Section IV, and conclusions are drawn in Section V.

II. PROBLEM FORMULATION

A. Assumption

The SN design in this letter is specifically tailored for
weather stations acting as sensor nodes, which are stationarily
deployed in the ROI. Each node is connected to a telemetry
device that enables it to send data to a base station, and is also
equipped with a solar panel as an energy source. Therefore, net-
work connectivity and energy consumption are not of concern
in this letter and are not considered for optimization.

B. Experimental Data Set

This study is conducted using Tasmania’s South Esk Hy-
drological Model, developed by the Commonwealth Scientific
and Industrial Research Organisation (CSIRO) [15]. The model
covers a set of environmental parameters in the North East
of Tasmania (−41.0◦ to −42.0◦ latitude and 147.0◦ to 148.5◦

longitude). The ROI is mapped as a 2-D data grid of size of
151 × 101 and is in netCDF [16] format.

A total of one year of averaged daily data are utilized in
our experiments. We focused on a number of parameters for
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different purposes in our study: 1) elevation data are mainly
used for the sensor placement optimization purpose; such se-
lection is justified based on the fact that such data can be ac-
cessed from a designated source, and Tang et al. also suggested
that a high-elevation sample is crucial within the data set for
meteorological studies [17]; and 2) environmental parameters
such as temperature, relative humidity, and solar radiation are
employed for the evaluation.

C. Problem Statement

In this letter, the quality of an SN is measured by the
“degree of representativeness” toward the ROI in which the
SN is deployed. We formulate the representativeness as how a
certain placement of sensor nodes allows an interpolator to best
estimate particular environmental variables across the ROI. To
achieve a high representativeness of an SN design, we take the
following considerations into account.

Spatial interpolation is criticized because of the incapabil-
ity to estimate extreme values [17]. For example, within a
mountainous landscape, if we merely deploy the sensors on
the lower ground (i.e., foothills in this case), we will not be
able to estimate the measurement of interest at the peak of the
mountain. Considering such scenario, the focus of our sampling
method is to discover the distribution of sensors (encompass
those extreme values) to allow the best estimation/interpolation
of particular environmental phenomena on the later stage.
Furthermore, a good interpolator can also be evaluated by the
extrapolation capability of distinct methods. Therefore, this
issue will also be incorporated in the optimization criteria.

Toward this end, this letter aims to use EA to optimize the
locations of N nodes that minimizes the error of the estimated
(interpolated and extrapolated) surface under study.

III. DEPLOYMENT STRATEGY

The aforementioned problem statement leads us to a multiob-
jective optimization problem, where it is typically impossible to
have a single solution that satisfies all the objectives. Therefore,
the focus is looking for a tradeoff among the objectives instead
of looking for a single solution [18].

A. EA

We employ an EA [19] to address the multiobjective opti-
mization problem in this letter. The EA mimics the process
of natural selection principles to solve complex searching and
optimization problems. The algorithm starts with a randomly
generated population (a set of possible solutions), and it ex-
ecutes the reproduction process in each generation, including
parent selection, crossover, and mutation. In this letter, each
possible solution (individual) represents a single deployment
of SN, which incorporates the position of sensor nodes within
the ROI. Elitism is performed at the end of each generation to
ensure that the best solution seen so far is not lost. Gradually,
the most successful individuals evolve to discover the near-
optimal solutions (Pareto front) [20].

We utilized EA from a Python library—Distributed Evolu-
tionary Algorithms in Python [21]. Table I presents the param-

TABLE I
EA PARAMETERS

eters that we used in our experiment. These values were chosen
from the literature [22]. The process is terminated when the
Pareto front remains the same over the last 50 generations (the
stopping criterion).

B. Fitness Function

The EA discovers near-optimal solutions according to the
so-called fitness functions that define the quality (SN repre-
sentativeness) of a particular individual (SN design). Let X =
{x1, x2, . . . , xN} be a set of N sensor nodes deployed within
the ROI. Based on the objectives of this letter (see Section II-C),
we formulate the functions as follows.

1) Fitness Function 1: This function aims to identify the
extreme values within the landscape. We leverage the main
pitfall of the spatial interpolation technique in conjunction with
the leave-one-out cross-validation (LOOCV) to assist us in
identifying those nodes

LOOCV(f̂) =

√√√√ 1

N

N∑
n=1

(
yn − f̂ (−n)(xn)

)2

(1)

where f̂ is a particular interpolation technique (see
Section III-C), yn is the observed value at the nth location, and
f̂ (−n)(xn) is the estimated value using f̂ with the absence of
the nth node (such that X \ {xn}). Then, the fitness function is
calculated by maximizing such equation, so that an interpolator
is able to estimate a good representation of the ROI in the later
stage. In other words, this method is trying to find a set of
node locations in a way that each node is important and must
be deployed within the network. The absence of any node will
greatly degrade the representativeness of the area under study.

2) Fitness Function 2: We also want to consider the extrap-
olation capability of f̂ by minimizing the root-mean-squared
error (RMSE) of the estimated map’s corners

RMSE(C) =

√√√√1

4

4∑
n=1

(
yn − f̂(xn)

)2

(2)

where C is the locations at the map’s corners that are located
at the top left, top right, bottom left, and bottom right of the
surface.

C. Spatial Interpolation Techniques

This letter adopted three of the most frequentlyused spatial
data interpolation techniques [24]: inverse distance weighting
(IDW), ordinary Kriging (OK), and thin plate spline (TPS).
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TABLE II
NUMBER OF REPLICATIONS (n) FOR EACH RESPECTIVE METHOD

AND NUMBER OF NODES, CALCULATED USING (3)

We are interested in observing how the application of different
interpolation techniques on the proposed methodology will
affect the performance. Brief descriptions of these methods are
as follows.

1) IDW: Utilizes the spatial distance between the point to be
interpolated and sample points as the main weighting mecha-
nism [25]. This method has been extensively used because it is
computationally efficient and produces acceptable results.

2) OK: A geostatistical method that incorporates the local
spatial variances of its neighboring data points within the inter-
polation process [26]. Kriging-based techniques have been sug-
gested as the optimal method overall from the literature [24],
with the downside of being computationally heavy.

3) TPS: A spline-based technique for spatial data interpo-
lation introduced by Duchon in 1976 that passes through each
sample point [27]. It is based on the physical analogy involving
the bending of a thin metal to create an interpolated surface.

IV. RESULTS AND DISCUSSIONS

In order to evaluate our work, we replicate the simulation
using several different runs. While there is no empirical method
to determine how many replications are needed, we utilized the
method proposed in [28] as follows:

n =

(
z × σ

μ× acc

)2

(3)

where n is the required number of replications, z refers to the
z-score of 1.96 which leads to 95% of confidence interval (CI),
μ and σ are the mean and standard deviation obtained from
preliminary simulations of 10 runs, and acc is the percentage
of μ that we want to get as deviation (5% of accuracy in our
case). The following sections are generated using replications
based on Table II. We adopt 10 as the minimum number of
replications in the case where n < 10.

A. Optimal Interpolator for EA’s LOOCV

The first experiment is aimed to determine which interpola-
tion method is best suited for the EA’s LOOCV. Since a single
run will generate a set of Pareto front (PF) that consists of a
number of SN designs, we choose the solution that favors the
first objective function (Fig. 1). In this experiment, we evaluate
the techniques based on two criteria.

1) Ability to estimate close-to-reality measurements. RMSEs
between the observed and the estimated values are cal-
culated throughout the map, and the result is shown in
Fig. 2(a).

2 “Extrapolation” capability of each method.We calculated
the RMSE at the map’s corner. The result is shown in
Fig. 2(b).

Fig. 1. Typical plotting of multiobjective EA with two objective functions:
(a) x-axis, maximization of (1); and (b) y-axis, minimization of (2). The red
markers are the explored solutions throughout the EA process, and the green
dots are the Pareto front (a list of nondominated solutions).

Fig. 2. Interpolation and extrapolation performance of different interpolation
techniques. The x-axis represents the number of nodes (N), and the y-axis is
the RMSE value (the average and 95% CI). The RMSE is the error calculation
between the observed and the estimated surface height data. (a) Throughout the
landscape and (b) the map’s corner.

Fig. 2(a) presents the performance among three compared
spatial interpolation techniques: OK, IDW, and TPS. The result
shows that OK performs the best (lowest RMSE), and it is
followed by IDW and TPS. The CIs of OK and IDW are rela-
tively small and are barely noticeable, which indicates that both
methods produce relatively stable results. TPS, on the other
hand, has a very large CI with the number of nodes (N) being
5, which becomes less significant as N increases. The perfor-
mances among these methods progress to converge as N=20;
further increase in N does not substantially reduce the RMSE.

According to Fig. 2(b), the extrapolating capabilities of the
compared techniques have the similar performance behavior as
in Fig. 2(a) (OK, followed by IDW and TPS). Interestingly,
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Fig. 3. Performance comparisons among different parameters. (a) Air temperature, (b) relative humidity, and (c) solar radiation. The x-axis is the number of
nodes, and the y-axis is the normalized RMSE.

the extrapolating performance between IDW and TPS becomes
comparable starting from N = 25, where IDW performs rel-
atively stable regardless of N . The fact that OK outperforms
other techniques is not surprising, considering that OK incor-
porates geostatistical analysis within its calculation.

These results have shown that OK suits the best for our
proposed method. Thus, the subsequent simulation will utilize
OK as the interpolation technique within EA’s LOOCV.

B. Performance Assessment

This simulation is used to validate the proposed method by
comparing the interpolation RMSE generated from the sam-
pling design of different environmental parameters: tempera-
ture, relative humidity, and solar radiation. The main objective
of this experiment is to determine whether using surface height
data within the optimization (spatial sampling design) is able
to generate a close-to-reality measurement of other parameters
within the ROI.

Fig. 3 demonstrates the simulation results. In general, it
shows that the RMSE decreases for each parameter as the
number of nodes N increases. However, it is noticeable that air
temperature has the most significant quality improvement as N
increases [see Fig. 3(a)], as reflected in median, interquartile
range, whiskers, and outliers. It is then followed by relative
humidity [see Fig. 3(b)] that behaves similarly with temperature
(median), while the only discrepancy is the less significant
improvement in terms of whiskers and outliers. Finally, for the
case of solar radiation [see Fig. 3(c)], a slight improvement can
be observed for the median, but not the variability, particularly
whiskers and outliers (e.g., N = 20).

As a result, under the current empirical study, we suggest that
using elevation in the sampling design suffices to obtain confi-
dent temperature and relative humidity data. In a less restricted
budget situation, the best representativeness of all the variables
could be achieved by employing 35 nodes (e.g., Fig. 4).

V. CONCLUSION

The main objective of this letter is to obtain near-optimal
sensor node placements that allow any interpolator to best
estimate a particular environmental phenomenon of interest.
A novel spatial sampling design approach is proposed by
using multiobjective EA to minimize the prediction error (see
Section III-B).

Fig. 4. Example of an SN deployment (35 sensor nodes) within the ROI,
generated by the proposed methodology. This figure demonstrates the elevation
map from the South Esk model, and the red dots are the node locations to be
deployed within the landscape.

In order to define which interpolation technique is suitable
for our work, three different spatial interpolation techniques
are compared. Our results indicate that using OK produces the
best results, which yields the lowest interpolation error and best
extrapolating capability (see Section IV-A).

This letter provides a simulation which would help decision
makers while designing an SN that could deliver fit-for-purpose
data without introducing undesirable costs resulting from the
excessive placement of nodes. Based on the outputs (Pareto
optimality solutions) generated by the proposed method (see
Fig. 1), the decision makers are required to select a single
SN design that incorporates additional consideration of their
domain knowledge (i.e., sparsity and the feasibility of the
deployment) that is suitable for their purpose.
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