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ABSTRACT
This paper presents an approach to the design of Environmental Sensor Networks
(ESN) which aims at providing a robust, fit-for-purpose network with minimum
redundancy. A set of near optimum ESN designs is sought using an Evolutionary
Algorithm, which incorporates redundancy and robustness as fitness functions. This
work can assist the decision making process when determining the number of sensor
nodes and how the nodes are going to be deployed in the region of interest.

KEYWORDS
sensor networks design; multi-objective optimisation; evolutionary algorithm;
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1. Introduction

Determining changes in environmental parameters over an extensive region is vital for
a number of human activities including farming [1, 2], water usage [3–6], logistics [7–
9], tourism and recreation [10, 11], urban development [12–14] or emergency responses
[15, 16]. Over the past decades, there have been a number of technological advances
in sensing instrumentation [17–20], data transmission [21, 22], data format [23, 24],
management and storage [25], as well as in data processing and analytics [26, 27].
Those developments have provided us with more accurate weather forecasts and better
decision-making when environmental parameters are involved. Fundamental to any
forecast modelling is the quality of the environmental sensing. The purpose of the
sensing exercise should be a guiding principle for the deployment of Environmental
Sensor Networks (ESN).

In order to have a fit-for-purpose ESN, design is crucial prior to the deployment
[28–30]. An ESN design will inform the choice of sensor quality that is required for the
purpose, the number of sensor nodes for data collections which suit the user’s needs;
it should also determine the frequency of data reading and data transmission, data
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storage strategies, key metrics to quality assurance and quality control (QA/QC),
operational period, and priorities in maintenance under budget constraints [30–33].
Some practical aspects are also important source of constraints to the design of ESN.
These include considerations on the availability of power supply, costs associated to
the experiment (e.g., hardware, communication services, deployment, maintenance,
decommissioning), safety, interoperability, data management, meta-data capture, and
storage.

One of the major foci in current ESN design practice is to satisfy a specific appli-
cation requirement within a given budget. On the other hand, when sensors fail, the
usefulness of the network degrades and no longer produces the data needed. Robust-
ness of ESN is essential and should be considered in the design process. In principle, a
robust ESN can be achieved by over sampling, at a potentially prohibitive cost. Nev-
ertheless, redundancy in sensor nodes deployment would also introduce an undesirable
increase in both deployment and maintenance costs. For this reason, it is important
to find a good compromise of ensuring maximum robustness (fit-for-purpose) with
minimum redundancy (cost-effective).

In the current work we propose a methodology to search for the best placement for a
given number of sensor nodes with redundancy and robustness as the primary factors
to be optimised. A model output of temperature distribution over a large region is used
to demonstrate the proposed method. The quality of the network is assessed with the
purpose of representing a temperature distribution within the region under study.

2. Problem Formulation

Design of an ESN is about deciding how many sensor nodes are required to best
represent a given region, as well as where those nodes will be deployed, how frequently
they should collect and communicate the data, and for how long they will operate.
Design of ESN could also inform priorities for maintenance, the impact of sensor node
failure, and even the quality of the sensors and their supporting hardware. Designing
a sensor network is intrinsically an optimisation problem.

In the present study we design a network of temperature sensors that best represent
a Region of Interest (RoI). An ESN design is formulated as a set of ESN deployment
plans which cover a number of sensor nodes and the placement of each node across the
RoI. Representativeness is considered by comparing how close the measured values
are from the model output generated by the ESN over the entire region. Suppose
Y = {y1, y2, . . . , yN} is a set of N sensor nodes deployed in the RoI; and yn,t is the
averaged daily temperature measured by node yn on the tth day. The RoI is mapped
as a two dimension space X (described in section 3.1; and each node in Y could be
deployed anywhere in X (illustrated in Figure 1).

There is a significant growth in search space with a larger area of deployment.
Assuming there is one sensor node going to be deployed in 8×8 space, it means, there
are 64 possible sensor deployment schema. The number of possible locations will also
grow significantly with the increase in the number of sensor nodes. As an example,
the deployment of four sensor nodes in 8 × 8 space would lead to 64C4 = 64!

( 4!·(64−4)! )

or 635, 376 possible deployment schema. In this type of deployment, the search space
is very large with each position yielding different levels of representativeness.

A robust ESN would be able to perform appropriately for its purpose even in a
condition where loss or disruption of some of its sensors occurred. Measures, such as
choosing excellent hardware, having a preventive and quick corrective maintenance
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Figure 1. An example of how an ESN design consisting of five sensor nodes is encoded to form an individual

(i.e., a possible solution) and a population (i.e., a set of possible solutions). The Region of Interest (RoI) in
this study is gridded as a two dimensional space (151×101) where each cell is indexed. The placement for each

sensor node within the RoI is identified by the cell index. In this figure, the fifth sensor node (y5) is placed in

index 150 which is located on the top-right corner of the RoI.

schedule, adding more sensor nodes (if budget allows), and/or adopting a computa-
tional procedure to fill gaps in the data could promote the robustness of the network.
Data gap filling can be achieved by two distinct approaches. The first approach is a
temporal interpolation, when some knowledge about the dynamics of the phenomena
of interest (e.g., temperature or solar radiation) is well known [34–36]. In the present
study we used a linear temporal interpolation to estimate missing values (i.e., gaps in
the data) which were commonly found in the case of sensor failure or data commu-
nication issues. More accurate methods would include time-series modelling such as
time-series analysis [37, 38] or pattern matching [39, 40]. Another approach is to use
spatial interpolation, when data from neighbouring nodes can be applied to estimate
the value that is missing [41–43]. More sophisticated computational solutions for this
would also include temporal variability of the phenomena [44]. Robustness can also be
achieved by simply adding nodes to the network, if budget is not an issue. However,
adding sensors will lead to unnecessary redundancies. Redundancy within the network
occurs when there are one or more sensor nodes generated data which most of the
time are able to be estimated by their neighbouring nodes.

The ideal strategy to achieve robustness with minimum redundancy will require
good design, good hardware choice, maintenance schedule planning and some compu-
tational approaches to overcome inevitable data gaps. In the present work, a method-
ology to design a sensor network is proposed by employing two objective functions: one
to improve robustness with temporal interpolation and another one to, simultaneously,
reduce redundancies by using spatial interpolation.

3. Materials and Methods

In this work, there are two key important questions to be addressed in designing ESN:
(1) How many sensor nodes are needed to best represent the Region of Interest (RoI)?
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and (2) Where those nodes should be deployed? The number of nodes within an ESN
will impact the deployment exercise and maintenance costs. In addition, careful node
placement could support the effectiveness of an ESN and the efficiency of its operation
[45, 46].

In order to answers the questions, a computational method is proposed. The method
consist of three main procedures: ESN design optimisation, selecting the number of
nodes, and node placement. Each of the procedures is described in detail in Section 3.2,
3.3, and 3.4 respectively. The ESN design optimisation incorporated both redundancy
and robustness as its objective functions. The representativeness of each generated
ESN design, given a number of sensor nodes, is quantified and is utilised as a guide
to decide how many nodes to deploy. Further, the balance between redundancy and
robustness, including the feasibility for the deployment of each optimised design (given
the previously chosen number of nodes) is assessed in order to select the final ESN
design (node placement). A year of temperature data from an atmospheric model
output was used to demonstrate the performance of the proposed method; background
information on the data is given in Section 3.1. Figure 2 provides an overview of the
proposed method.

Figure 2. An overview of the proposed method in order to answer two key questions in ESN design (i.e., the

number of sensor nodes and the placement of the nodes).

3.1. Dataset

In order to investigate the proposed method, we used data from an atmospheric model
over a region of 15, 000km2 in the northeast of Tasmania. This model was implemented
by (author?) and it has been calibrated using scientific class weather stations. The
dataset is stored in netCDF format [23] as a two-dimensional data grid with a size of
151× 101 (15, 251 cells) and it is publicly accessible [48]. Calibrated model outputs of
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air temperature data throughout the year 2013 were selected for the present work.
For clarity purposes, the dataset in this work is formalised in mathematical nota-

tion as follows: Suppose X = {x1, x2, . . . , xN} is a set of N locations (cells) on two
dimensional space; and Xt = {x1,t, x2,t, . . . , xN,t} is a set of averaged daily tempera-
ture in two dimensional space X on the tth day. In this case xn,t represents an averaged
temperature at location (cell) xn on the tth day.

3.2. ESN Design Optimisation

Since we aim to construct an ESN design based on a number of criteria (redundancy
and robustness), we have a multi-objective optimisation problem. Several approaches
are available to solve multi-objective optimisation problems [49]. Considering the large
size of the search space (described in Section 2), we employed an Evolutionary Algo-
rithm (EA) in our work as the optimisation technique.

EA [50] is a computational algorithm that mimics the biological evolutionary pro-
cess. The algorithm is widely used for solving both single and multi-objective op-
timisation problems within a relatively large search space. It starts with an initial
population, which consists of a number of individuals. Each individual represents a
single possible solution, and the quality of each individual is calculated by the so-called
fitness function. Further, three genetic-like operations (i.e., selection, recombination,
and mutation) are applied to the current population to produce a new generation of
the population. The selection operation preserves the fittest individuals for the next
generation while the recombination and mutation operations take part in preserving
variation within the population. The process runs iteratively for several generations
until user-specified stopping criteria are met. Two stopping criteria are employed for
the purpose of this work:

1. when the maximum number of generations is achieved; or
2. when the Pareto Front [51, 52] has not changed over a pre-specified number of

generations. In other words, the ”saturation point” threshold is met.

Figure 3 illustrates the overall work-flow in EA. At the end of the iteration, a set of
near-optimum individuals can be found within the population of the last generation
[49]. This set of near-optimum individuals is known as the Pareto Front in the study
of multi-objective optimisation.

In the present study, the optimisation procedure explored several possible sensor
node placements within the search space (i.e., region covered by the ESN) for a given
number of nodes. Each potential solution (i.e., position of sensor nodes) is encoded as
an individual (illustrated in Figure 1) where each one is ranked against its fitness (i.e.,
optimum robustness and redundancy). Figure 4 provides a visual description regarding
the ESN design optimisation implemented in this study.

Both redundancy and robustness of an ESN design are translated as a set of fitness
functions, which will be used to quantify and to evaluate the fitness of each individual
produced in every generation. The formulation of these two functions is described in
the following sub-sections (sub-section 3.2.1 and 3.2.2 respectively).

3.2.1. Redundancy

Redundancy in this work is defined as an unnecessary deployment of sensor nodes
in which a node’s role can be handled by its neighboring nodes. Leave-one-out cross-
validation (LOOCV) is utilised in conjunction with a spatial data interpolation tech-

5



Figure 3. A general work-flow in an Evolutionary Algorithm (EA). The initialisation process generates a
number of random individuals to form an initial population. The rest of the routines run iteratively until

the predefined stopping criteria are met. The evaluation routine assesses each individual within the current

population in respect to all predefined fitness functions (i.e., objective functions). The selection routine forms
a new population for the next generation based on the fitness values assigned to each individual. Mutation and

recombination maintain the variation within the population which is essential in order to explore the search

space and to avoid local optima [50].

nique to obtain the “least redundant node placement” [53], where each node would
cover the values which are unlikely to be estimated by its neighbouring nodes. For
the purpose of clarity, Figure 5 provides a graphical illustration of the LOOCV. The
function is formulated as follows:

LOOCV (f̂) =

√√√√ 1

N · T

N∑
i=1

T∑
t=1

(yi,t − f̂ (−i)(yi, t))2 (1)

Where:
f̂ is the spatial data interpolation function (Equation 2)
yi,t is the value measured by node yi on tth day

f̂ (−i)(yi, t) is the estimated value produced by f̂ with the absent of ith node (Y \{yi})
N is the number of sensor nodes deployed in the RoI
T is the total number of days in a year

Inverse Distance Weighting (IDW) proposed in [42] is chosen as the spatial data
interpolation in the present work. Suppose yo represents the node located within the
RoI where a value is required to be estimated. The spatial data interpolation function
is formulated as follows:

f̂(yo, t) =

N∑
i=1

d−1
i∑N

i=1 d
−1
i

· yi,t (2)

Where:
f̂ is the spatial data interpolation function (IDW)

f̂(yo, t) is the estimated value in node yo on the tth day
N is number of known nodes (i.e., neighbouring nodes)
di is the distance in space between yo and yi
yi,t is the value measured in node yi on the tth day
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Figure 4. An overview of the ESN design optimisation procedure in this work.

The function presented in Equation 1 is aiming to find a set of node locations in
a way that each node is important and necessary to be deployed within the network.
This allows the interpolator to estimate a good representation of the RoI. The absence
of any node will greatly degrade the representativeness of the area under study, since
each node is unlikely to be estimated by its neighbouring nodes. In this case, a higher
LOOCV (f̂) implies a lower degree of redundancy and an individual (ESN design)

which yields a higher LOOCV (f̂) is comparatively better than the one which produces
a lower value. The fitness function is calculated by maximising Equation 1.

Figure 5. Leave One Out Cross Validation (LOOCV) applied in this study. For simplicity, the figure presents
an example of an ESN formed by three sensor nodes. The LOOCV is conducted by omitting one sensor node

in turn while the rest of the nodes are used to predict the omitted node A spatial interpolation technique

(Inverse Distance Weighting) is employed as a method to predict the node. In the end, the prediction errors
are calculated as the output of the LOOCV.
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3.2.2. Robustness

A robust ESN design, as defined in this work, is defined as a design that maintains the
network’s performance while dealing with the loss or disruption of a node within the
network. The robustness is quantified by going through the N nodes, and uses linear
temporal interpolation to estimate the averaged daily temperature at the location
where each node is located, throughout the year (T days). The function is formulated
as follows:

RMSE(ĝ) =

√√√√ 1

N · T

N∑
i=1

T∑
t=1

(yi,t − ĝ(yi, t))2 (3)

Where:
RMSE(ĝ) is the root-mean-squared error between the estimated value and the

observed value
ĝ is the temporal data interpolation function (Equation 4)
N is the number of sensor nodes deployed in the RoI
T is the total number of days in a year

Linear Interpolation is applied as the temporal data interpolation technique used
in this work and it is formulated as follows:

ĝ(yo, t) =
1

2
· (yo,t−1 + yo,t+1) (4)

Where:
ĝ is the temporal data interpolation function
ĝ(yo, t) is the estimated value in node yo on the tth day based on the past (t−1)

and future (t+ 1) measurements within the same node (i.e., at the same
location in space)

The function presented in Equation 3 measures the degree of error for each node
in an ESN design to recover itself (i.e., by utilising a temporal data interpolation
technique) in the case where missing values occur. In this case, a lower RMSE(ĝ)
implies a higher degree of robustness and an individual (i.e., ESN design) with lower
RMSE(ĝ) is relatively better compared to the one with higher value. The fitness
function is calculated by minimising Equation 3.

3.3. Selecting Number of Nodes

Decision making on how many sensor nodes should be deployed has never been an
easy task in ESN design. Any decision will eventually have an impact on both the de-
ployment and the maintenance cost of the networks. In order to assist such a decision
making process, we simulate several different numbers of nodes and apply the previ-
ously described optimisation procedure (Section 3.2). For each near-optimum design
produced, we assessed its representativeness with respect to the RoI. We formulate
the representativeness of an ESN design as the capability of the networks to inter-
polate the averaged daily temperatures across the entire space within the RoI. The
performance of each design is measured based on the prediction error over a period of
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one year. In this case, a lower prediction error indicates a better representativeness.
The prediction is calculated based on the spatial interpolation technique (i.e., IDW)
as previously described in Equation 2. The formula adopted in this work to quantify
the prediction error is as follows:

RMSE(f̂) =

√√√√ 1

N · T

N∑
i=1

T∑
t=1

(xi,t − f̂(xi, t))2 (5)

Where:
f̂ is the spatial data interpolation function (Equation 2)
N is the total number of cells in two dimensional space X
T is the total number of days in a year
xi,t is the average temperature data measured at location xi on the tth day

f̂(xi, t) is the estimated value for average temperature data at location xi on
the tth day

Figure 6. An overview of the procedure for selecting number of sensor nodes with respect to the representa-

tiveness yielded by all the optimised ESN designs for a given set of different number of nodes.

In general, ESN designs which incorporate higher numbers of sensor nodes should
better represent the RoI compared to those with fewer nodes. The procedure proposed
within this work would be able to quantify the degree of representativeness which
could be gained by incorporating certain numbers of sensor nodes into the design. The
final decision in determining the number of sensors to be included would certainly
be restricted by the budget constraints; and the proposed procedure could benefit in
assisting such decision making process. Figure 6 illustrates the procedure for selecting
the number of sensor nodes in this work.
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3.4. Selecting Node Placement

Once a number of nodes has been decided, the next decision to be made is selecting
an ESN design from a set of near-optimum designs. Due to the inherent conflicting
nature of the objectives for multi-objective optimisation problems, where optimising
one objective may sacrifice the other objective, there rarely exists a single solution
that simultaneously optimises all the objectives. Therefore, instead of having a single
optimum solution, a Pareto Front (PF) is formed to capture a set of near-optimum
solutions (i.e., non-dominated solutions) [50]. In this work, a given number of sensor
nodes would yield a set of different possible placements of the nodes across the RoI.
Each placement will produce a particular composition among two fitness values (re-
dundancy and robustness). The selection of the final solution (the final ESN design)
within the PF will involve the users’ domain knowledge of the problem on hand. In
our work, the process of selecting a final ESN design is divided into two stages: feature
assessment and feasibility assessment. Figure 7 presents the procedure for selecting a
final ESN design in this work.

Figure 7. An overview of the procedure in selecting an ESN design.

3.4.0.1. Feature Assessment. The proposed method uses two fitness functions
while searching in the optimum space. One function measures robustness and the
other one redundancy. Running both functions will generate several possible solutions
where redundancy and robustness vary in value for an optimum design of the network.
Feature assessment involves the decision maker’s preferences while dealing with the
trade off between redundancy and the robustness. The advantage of this method is
that the users can decide the level of redundancy and robustness they choose to have.

3.4.0.2. Feasibility Assessment. A final phase of the decision on where sensor
nodes should be deployed can be made by considering accessibility of the site, costs,
safety, among other aspects associated with field work. Many of these attributes lack
numerical values. This limitation is overcome by human judgement. The feasibility
assessment would incorporate the decision makers’ domain knowledge of the RoI:
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• whether the design has ’captured’ critical locations within the landscape;
• the feasibility of the design to be deployed in respect to the constraints in the

physical landscape;
• the level of sparsity of the node locations to avoid clustering.

3.5. Experimental Setup

The optimisation procedure in this work was implemented in Python and an open
source Python module: Distributed Evolutionary Algorithms in Python (DEAP) [54]
was utilised to assist in the optimisation process. Grefenstette’s parameter setting [55]
was adopted as the EA’s parameters (Table 1) in this work.

Parameter Value

Population size 30
Crossover probability 0.9
Mutation probability 0.01
Crossover operation One Point
Mutation operation Uniform Integer
Selection operation NSGA2 [56]

Max. number of generations 1000
Saturation point threshold 30 generations

Table 1. This table presents the parameters which are implemented in our work to run the EA.

Replication is applied to evaluate our work. We utilised the method proposed in
[57] to determine the required number of replications. The method is formulated as
follow:

n rep = (
z × σ
µ× 0.05

)2 (6)

where n rep is the prescribed number of replications, z refers to z-score of 1.96 which
leads to a 95% confidence interval; µ and σ are the mean and standard deviation
obtained from a preliminary simulation; and 0.05 refers to the expected deviation
percentage (5%) of µ. We ran our preliminary simulation over 10 different runs, each
with a different random seed, for each set of sensor nodes. The prescribed number of
replications resulting from our preliminary simulation are presented in Table 2.

N 5 10 15 20 25 30
Fitness Function 1 7 9 7 9 3 4
Fitness Function 2 1 1 1 1 1 1

Table 2. Prescribed number of replications (n rep) from our preliminary simulation. The calculation is based

on Equation 6 for each different number of sensor nodes with respect to the two fitness functions (Equation 1
and 3).

We adopted ten as the minimum number of replications in the case where n rep <
10. As shown by Table 2, there is no n rep greater than ten, therefore we adopt ten as
the replication number for all simulations in this work. In our experiment, we simulate
six different numbers of sensor nodes to be deployed (5, 10, 15, 20, 25, and 30 nodes).
For each number of nodes, we run the optimisation procedure (described in Section 3.2)
with ten replications. A unique random seed number is assigned for each replication.
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4. Results and Discussion

The impact of the increase in the number of sensor nodes on the representativeness of
the ESN is presented in Figure 8. The figure suggests that an increase in the number
of nodes will improve the representativeness of the networks, which can be seen by
the decline in prediction error and also by the reduction in data deviation. This is
not surprising, considering there are more data samples being collected from the RoI.
A relatively more significant improvement can be achieved by increasing the number
of nodes from 5, 10, and 15, up to 20 nodes. Once the number of nodes reached 20,
adding more nodes resulted in less significant improvement.

Figure 8. The impact of increasing the number of sensor nodes on the capability of the ESN to interpolate
the entire space of the RoI over a one year period of time. The plotting is based on 10 simulation runs with a

different random seed in each run.

The decision to incorporate a certain number of sensor nodes would be driven by the
purpose of the ESN and also the current budget situation. If the budget only allows
for the deployment of a limited number of sensor nodes, then the decision maker could
analyse whether the resulting representativeness is sufficient or not for the purpose of
operating the network. The information generated from this simulation would benefit
such a decision making process.

Figure 9(a) presents all the near-optimum solutions obtained for the design with 30
sensor nodes. Each point of this plot represents a single near-optimum ESN design of a
given number of nodes. All the designs are generated by our method (over 10 different
runs) with respect to the two fitness functions (i.e., redundancy and robustness). Two
different colors are employed in the figure to represent the degree of priority among the
two fitness values (i.e., green and red to represent optimum redundancy and optimum
robustness respectively). Having two objective functions has the advantage of leaving
it to the decision maker of the network to decide what property he wants the network
to have: more or less robustness, or more or less redundancy, or a balance of both. The
visualisation presented in Figure 9(a) would assist the decision maker in understanding
the trade-off which they are dealing with while selecting a certain ESN design.

Decision makers will be further assisted by another data visualisation presented in
Figure 9(b). The color bar on the right side of the figure represents the elevation (i.e.,
altitude). This kind of visualisation assists a decision maker to examine the feasibility
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(a) Feature assessment support. (b) Feasibility assessment support.

Figure 9. The figures are generated for 30 sensor nodes with the aim of assisting a decision maker in selecting
a final ESN design. The markers plotted in Figure 9(a) represent all the near-optimum ESN designs optimised

for 30 sensor nodes (with respect to both redundancy and robustness as the features to be assessed). The

green markers favor more redundancy (maximum LOOCV (f̂)) whereas the the red ones favor more robustness
(minimum RMSE(ĝ)). Figure 9(b) shows the placement for sensor nodes in the RoI chosen from one of the

markers plotted in Figure 9(a). The background color represents the elevation in the RoI (in meters).

of a particular ESN design for deployment in the RoI. In the case where the feasibility
criteria were not satisfied, decision makers could select some other alternative of ESN
designs (Figure 9(a)) and iterate the procedure until the most desirable ESN design
is found.

5. Conclusions

Design is an essential process prior to the deployment of an ESN. The decision in de-
termining the number of sensor nodes and the placement of the nodes in the RoI would
impact the effectiveness of the network and the efficiency of its operation. This paper
presented an ESN design technique which is able to promote robustness (to maintain
a fit-for-purpose ESN) while incorporating minimum redundancy. This technique will
benefit a decision maker to find a balance between redundancy and robustness in the
design of ESN. An Evolutionary Algorithm is utilised in this work to locate a set of
near optimum ESN designs. The technique can support a decision maker, particularly
in determining the number of sensor nodes and how the nodes will be deployed in the
RoI.
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