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Abstract This paper proposes a method to design the
deployment of sensor nodes in a new region where
historical data is not available. A number of mobile
platforms are simulated to build initial knowledge
of the region. Further, an evolutionary algorithm is
employed to find the optimum placement of a given
number of sensor nodes that best represents the region
of interest.
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Introduction

Environmental Sensor Networks (ESNs) offer fast and
accurate measurement of environmental parameters,
enabling environmental monitoring in remote areas
that may be of difficult to access (Werner-Allen et al.
2006; Martinez et al. 2006). These networks are con-
sidered a standard component of observing systems
which provide monitoring and data for modelling to
better understand the environment (Hart and Mar-
tinez 2006; Corke et al. 2010; Liao et al. 2014). With
more recent advances in both sensing (Silva et al.
2011; Hu et al. 2013; Felemban et al. 2015) and
communication technologies (Bhandary et al. 2016;
Wu and Cardei 2016; Cherkassky and Gannot 2017),
the breadth and depth of monitoring applications has
also grown significantly with ESN services now being
offered in agriculture (Hui et al. 2016; Pierce and
Elliott 2008; Dong et al. 2013), forestry (Lloret et al.
2009; Martı́nez-de Dios et al. 2011), waterways (Dong
et al. 2015; Kim and Myung 2015; Tomperi et al.
2016), air quality control (Zampolli et al. 2004; Elen
et al. 2012), and military operations (Lee et al. 2009;
Durisic et al. 2012).

The design of an ESN has significant impact on the
efficiency of its operation (Boukerche 2009; Frances-
chini 2011; McGrath and Scanaill 2013). Two funda-
mental parameters can be highlighted in every ESN
design: the number of sensor nodes to be deployed
and the placement of each node within the Region
of Interest (RoI) (Younis and Akkaya 2008a, b; Budi
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et al. 2015; Susanto et al. 2016; Budi et al. 2017).
The complexity of this design problem increases with
a requirement to have a fully functional ESN with
the least possible number of sensor nodes (D’Este
et al. 2012; Liu et al. 2015). Within the current study,
the decision-making process in relation to these two
parameters are mainly shaped by the past measure-
ments (i.e. historical data) conducted in the RoI. This
historical data is utilised to capture the general char-
acteristics of a particular environmental property (e.g.
temperature, humidity, wind speed) over a certain
period of time (e.g. seasonal, annual) (Zhang et al.
2007; Lazzara et al. 2012; Claverie et al. 2016).

In this paper, the ESN design proposal is focused on
defining an ideal distribution of sensor nodes within
a new region where historical data is not available.
ESN design in the absence of any historical data
has never been a trivial task. In the absence of past
measurement data, the first step is to collect data eco-
nomically. Data covering multiple years is desired and
recommended to capture seasonal effects (Trenberth
et al. 2014; Cropper and Cropper 2016). On the other
hand, this would result in long delays and high costs
in the deployment. Therefore, it is reasonable to use
the current period as typical rather than belonging to
either extreme. Four dates that represent equinoxes
and solstices provide convenient points for season
identification. Since it is neither cost effective nor free
from random environmental affects to collect all data
on a single day, the proposed method spreads the data
collection for each season over a number of days. The
following sections will describe the design setup for
the method to be presented in detail in this paper.

Methodology

Our proposal adapts a strategy where a number of
mobile platforms equipped with sensors are employed
over periods of 30 days around the target dates to
build an initial knowledge of the RoI. This enhances
cost effectiveness as only a few mobile platforms
need to be operated for data sampling. At the same
time, the approach overcomes the errors that may
result from random/extreme environmental events on
the date of data collection. Thus, the data collected
over the period will be projected, in the proposed
methodology, onto a single representative day of the
season. The mobile platforms envisaged for this study

are Unmanned Aerial Vehicles (UAVs) (Shahbazi
et al. 2014; Salamı́ et al. 2014; Yang et al. 2015),
Autonomous Underwater Vehicles (AUVs) (Ridao
et al. 2015; Chen et al. 2015b), and animal-borne
instruments (Kays et al. 2015; Carse et al. 2015; Rip-
perger et al. 2016). The method then utilises an evolu-
tionary algorithm (Coello et al. 2007; Deb 2009) to
locate the optimum placement of a given number of sen-
sor nodes to best represent the RoI being investigated.

Assumptions

The core strength of our ESN design proposal is the
acknowledgement of the absence of historical data to
guide the placement of the sensors. A limited sur-
vey is made to provide the relevant data. However,
this requires assumptions to be made about the envi-
ronment in the methodology. A clear statement of
these assumptions should help the reader to better
understand the methodology.

In an ideal situation, an environmental model
assumes the observation, pl,t made at geographic
location l at time t to be made of a number of compo-
nents. Each of these component values is specific to
the location and the time of the observations. Such a
model could be formulated as follows: pl,t = Ql +
Ll,t + Sl,t + Dl,t + Fl,t + El,t , where each of these
components and its assumed behavioural pattern is
described below:

1. Quiescent level Ql : This component represents
the long-term trend value of a certain environmen-
tal parameter at location l (Ji et al. 2014). The
value is unaffected by the time of observation.
However, the lack of historical records extending
over a long period implies that this component
cannot be isolated and evaluated as a single value.

2. Longer-period variation Ll,t : It is well known
and documented that environmental measure-
ments have influences that run over several years,
including the effects of solar activity (Foukal et al.
2006; Adolphi et al. 2014) or weather patterns like
El Niño (Cai et al. 2014; Chen et al. 2015a). Their
influence is generally significant and spreads over
large geographic areas extending well beyond a
typical RoI. As these effects extend over large
areas and have multi-year time frames, the com-
ponent may be treated as constant over the entire
RoI for the duration of the observations recorded
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for the design. They do not significantly influence
the optimal placement of the sensors.

3. Seasonal influences Sl,t : Seasons and the way
they affect the environment has a major influ-
ence on where the sensors should be located. The
design algorithm should record these observations
and account for the variations in the observa-
tions to best locate the sensors. The environmental
model, however, makes a simplifying assump-
tion that the effects are regional. The locations
that are geographically near to each other show
similar changes in each season and across the sea-
sons (Donohoe and Battisti 2013). The proposed
methodology recognises the characteristics of this
component by requiring that the measurements be
spread over all seasons of the year. It includes
one set of observations for each of the four main
seasons denoted by equinoxes and solstices.

4. Daily variations Dl,t : The rotation of the earth
around its axis has a strong and significant influ-
ence on the observed values of the parameter
(Lamb 2012). Again like the seasonal varia-
tions, these observations have significant local-
ity effects. Geographically near locations show
coherent and closely correlated changes.

5. Random/extreme environmental events Fl,t : Un-
predictable and unexpected environmental events
are quite common and occur at random times.
These events influence the observed values through
major deviations from the normal expected observa-
tions. The duration and also geographical extent of
these events can vary widely (Lamb 2012). Fortu-
nately, the events that exist over longer durations
also tend to be more geographically widespread.
Shorter duration unexpected events may or may
not be geographically local in their affects. The
proposed methodology accounts for such events
by spreading the observed periods in each season
to a significant number of days. In addition, mul-
tiple observation platforms are randomly located
to overcome the effects of localised events.

6. Observation and equipment errors El,t : Errors
due to equipment calibration, operators’ bias, and
other failures are common (Houston and Hiederer
2009). The model assumes that these errors are
usually small and are quickly identified, as the
number of platforms affected is usually small and
duration is short. The methodology ignores these
errors and expects that the mobile observation

platforms used for data collection are well main-
tained and provide accurate and reliable observa-
tions.

Experimental dataset

In order to simulate the data sampling procedure
with mobile platforms, an experimental dataset is
needed. The SouthEsk Hydrological model (Katzfey
and Thatcher 2011) is adopted as the experimental
dataset in our experimental study. The dataset cov-
ers a range of environmental parameters recorded on
an hourly basis and it has been calibrated using sci-
entific class weather stations. The study presented in
this paper focuses specifically on temperature data
over a 1-year period (2013). In terms of geographi-
cal coverage, the model covers an RoI located in the
northeast of Tasmania (− 41.0◦ to − 42.0◦ latitude
and 147.0◦ to 148.5◦ longitude). Figure 1 presents the
region under study.

The dataset itself is stored as a multi-dimensional
matrix in network Common Data Form (netCDF) for-
mat (Rew and Davis 1990). The region under study
is mapped into a data grid with a size of 151 × 101
(15,251 cells) and it is expressed as follows: Sup-
pose X = {x1, x2, . . . , xN } is a set of N loca-
tions (cells) on two-dimensional space; and Xt =
{x1,t , x2,t , . . . , xN,t } is a set of environmental param-
eter values measured in two-dimensional space X at
time t . In this case, xn,t represents the air temperature
data measured at location xn in time t .

Data sampling

In this work, the data sampling procedure is simulated
and a baseline dataset constructed. Such a dataset sub-
stitutes for the absence of historical data. It is then
utilised in the optimisation procedure to find an ESN
design which best represents the RoI.

Mobile data sampling

A number of mobile platforms instrumented with sen-
sors are employed and simulated as mobile sensor
nodes. The platforms are placed in a gridded location
with uniform distances before each of them starts to
explore the RoI with a unique random transect. While
exploring the RoI, each platform measures and col-
lects data on an hourly cycle within the range of a
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Fig. 1 Map of Tasmania (Australia). The red rectangular area
in the northeast region indicates the Region of Interest (RoI) in
this study. The RoI is mapped into a two-dimensional matrix

with the size of 151 × 101 where each cell represents a possible
location for a sensor node to be deployed

3 × 3 gridded area. The platform is located at the cen-
tral point at the start of each hour. Figure 2 illustrates
the measurement coverage for each mobile platform.
The data sampling process is conducted in the peak of
four different seasons over a 30-day period for each
season. The peak of the season is determined by the
solstices and the equinoxes within the corresponding
year (2013).

Suppose M = {m1, m2, · · · , mN } is a set of mea-
surements conducted by N mobile platforms operated
within two-dimensional space X (section “Experi-
mental dataset”). For each time t , each platform will
collect data within the range of 3 × 3 grid area. We
represent this 3 × 3 grid area with x(n),t . Since each
grid area covers 9 cells, the (n) will be limited for
1 to 9 only; where x(1), x(5), and x(9) represent the

Fig. 2 An illustration of measurement coverage conducted by
three mobile platforms (m1, m2, and m3). In every hour, each
platform measures the temperature data within the 3 × 3 grid-
ded area (depicted in a different colour for each platform). Each
cell within the gridded area is coded with x(1), x(2), · · · , x(9),

where x(1) represents the top-left cell and x(9) represents the
bottom-right cell. The figure also indicates an overlap in mea-
surement (depicted in yellow) where two mobile platforms m1
and m2 measure the same area (cell D4) at the same time
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top-left corner, the centre, and the bottom-right cor-
ner respectively. Suppose the mobile platform at time
t is located in location x10 and it will measure the air
temperature within the 3 × 3 grid area; the x(5),t will
be the centre of the grid area which is x10 in this case
and x(1) will be the top-left cell from the current loca-
tion of the platform. Further, we formulate each of the
temperature measurements as follows:

mi,t = { x(1),t , x(2),t , · · · x(9),t }
mi,t ⊂ Xt

(1)

where

mi,t is a set of temperature data measured in the
3 × 3 region by mobile platform i at time t .

x(1),t is the temperature data measured in the first
cell (top-left) within the 3 × 3 region (as
illustrated in Fig. 2) at time t .

Xt is a set of temperature data measured in two-
dimensional space X at time t (as described in
section “Conclusions”).

Since there is more than one mobile platform oper-
ating at the same time, overlapping in the measure-
ments may occur. In the real physical application,
such overlapping may produce different results within
experimental errors. In this situation, the recorded data
will be the mean value. The overlap measurement in
this study is formulated as follows:

Mt =
{ {m1,t , m2,t , · · · , mi,t , mj,t , · · · mN,t }, if no overlap

{m1,t , m2,t , · · · , mi,t � mj,t , Ō(i,j),t , · · · , mN,t }, if mi,t and mj,t overlapped
(2)

where

Mt is a set of temperature data measured by
N number of mobile platforms at time t .

mi,t is a set of temperature data measured in
the 3 × 3 region by mobile platform i at
time t (Eq. 1).

mi,t � mj,t is a set of non-overlapping tempera-
ture data measured by mobile platform
i and mobile platform j at time t . It
can also be expressed as (mi,t\mj,t ) ∪
(mj,t\mi,t )

O(i,j),t is the set of overlapped measurements
between mobile platform i and mobile
platform j at time t . It can also be
expressed as mi,t ∩ mj,t

Ō(i,j),t is the mean value of O(i,j),t

In every hour, each mobile platform moves from
one location to the next location by following a pattern
illustrated in Fig. 3. Let p be the current location of a
mobile platform and Q = {q1, q2, · · · , q24} be a set
of the next possible locations, where Q ⊂ X and X

is a set of N locations on two-dimensional space (as
described in section “Experimental dataset”). The next
location of the platform is randomly selected from Q.

As an outcome, this procedure will generate a set of
sampling data in the form of a data cube (i.e. one cube
for each season). Each cube holds all the measure-
ments which have been collected by mobile platforms
in two spatial dimensions over 720 h (30 days).

Data cube interpolation

The sampled data cube produced from the previous
procedure is then condensed from 720 into a 24-h
cube. The objective of this approach is to capture a
general temperature pattern in a day (over 24-h period)
for each season. In the case where there are three
mobile platforms operated in the RoI, the condensed
cube will have up to 3 × 30 = 90 sampling regions
for each hour. While transforming the cube into a

Fig. 3 The movement pattern of a mobile platform. In this
figure, p represents the current location of a mobile platform,
and the array of q represents all the possible locations for the
next movement. The next location is randomly selected (i.e., a
unique random seed is assigned)
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24-h cube, it is possible for more than one data item to
be recorded in the same location and at the same time.
The same approach is applied to handle the overlap-
ping in the data, such that, the mean value is going to
be the data stored in the new cube. Up to this point,
an incomplete sampled data cube has been produced,
consisting of a relatively small number of sampled
data items compared to the size of the cube. The next
step is to employ a spatial data interpolation technique
to form a complete cube.

The main objective in data interpolation is to esti-
mate an unknown value based on the values of a set of
neighbouring nodes (i.e. known nodes) (Li and Heap
2008). A spatially continuous (i.e. well-distributed)
environmental dataset across the RoI is often required
to enable justified interpretations to be made in a sci-
entific area. However, such data is not always readily
available and it is often difficult and expensive to
acquire. Spatially distributed data of natural phenom-
ena are often collected from point sources which are
sparsely and unevenly scattered across the RoI. Spatial
interpolation techniques are essential for estimating
environmental data for the unsampled locations from
a limited number of sample data points.

In this work, inverse distance weighting (IDW)
(Shepard 1968) was applied as the spatial interpola-
tion technique for the experimental study. The known
and estimated values are formulated as follows: Sup-
pose Y = {y1, y2, . . . , yN } is a set of N known nodes
located on two-dimensional space (as described in
section “Experimental dataset”); and yo represents the
node (i.e. located on the same two-dimensional space)
where a value is required to be estimated. The IDW is
formulated as follows:

f̂ (yo, t) =
N∑

i=1

d−1
i∑N

i=1 d−1
i

· yi,t (3)

where

f̂ is the spatial data interpolation function
(IDW)

f̂ (yo, t) is the estimated value in node yo at time t

N is the number of known nodes
di is the distance in space between yo and yi

yi,t is the value measured in node yi at time t

The interpolation procedure in this work produces
an interpolated cube of 24-h period for each peak
season. Each cube represents the typical hourly tem-
perature in a day within the corresponding season.

Further, each cube is then transformed into a data sur-
face by calculating the mean value in each location in
space. As an outcome, four data surfaces are gener-
ated, each representing the average daily temperature
in two-dimensional space in four different seasons.
Figure 4 illustrates the overall data sampling process
up to the construction of temperature data surface.

ESN design optimisation

The optimisation procedure in our study is focusing
on finding the placement of sensor nodes, given a cer-
tain number of nodes, to form an ESN configuration
which best represents the RoI. In this study, an ESN
represents the RoI by generating an interpolated spa-
tial dataset based on the values measured by its sensor
nodes. A good ESN design should produce fairly simi-
lar interpolated values with the actual values measured
in the RoI. The degree of representativeness of an ESN
design is measured by calculating the interpolation
error (i.e. the difference between the measured value
and the interpolated value).

The objective in the optimisation process is to find
the node placement which leads to a minimum inter-
polation error, or in other words to minimise the
interpolation error. Given that there is only one factor
to be optimised, this task involves a single-objective
optimisation problem.

The previously generated temperature data surfaces
are used as the dataset for optimising the ESN design.
Since there are four surfaces (one for each season)
and the ESN design to be optimised in the study is
expected to be operated throughout the year, the sur-
faces are merged to form a data cube (illustrated in
Fig. 5). This cube is then utilised as the baseline
dataset representing the temperature within the RoI
across four different seasons in a year.

Search space

When designing an ESN with N sensor nodes, there
are N different locations in the RoI to be decided for
the deployment. In the study of optimisation problems,
these variables are known as decision variables; and
a set of decision variables will form a solution. For
the purpose of this study, a solution is formulated as
follows: Suppose Y = {y1, y2, . . . , yN } is a set of N

sensor nodes deployed within the RoI; and yn,t is the
temperature data measured by sensor node yn at time t .
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Fig. 4 The workflow in the
data sampling process up to
the construction of
two-dimensional spatial
temperature surface. As an
example, three mobile
platforms are employed to
explore and collect data
within the Region of Interest
(RoI). Each platform has a
unique random transect
which is depicted with a
different colour

Fig. 5 The figure illustrates how the four average spatial tem-
perature surfaces (one for each season) are transformed into a
single sampling cube. This cube is used as a baseline dataset

for the optimisation procedure to find the optimum sensor node
placement which best represents the Region of Interest (RoI)
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The RoI is mapped as a two-dimensional space
X, which is similar to the dataset described in
section “Experimental dataset”. However, for the opti-
misation procedure, the baseline dataset is referring
to the data cube formed by the previously generated
temperature surfaces (as illustrated in Fig. 5). Since
each node in Y could be deployed anywhere in X,
this would lead to a significant growth in the search
space with a larger area of deployment. For exam-
ple, the deployment of four sensor nodes in an 8 × 8
space would lead to 64C4 or 635,376 possible deploy-
ment schema. In this type of deployment, the search
space is considerably large with each position yielding
different levels of representativeness.

Evolutionary algorithm

Taking consideration of the large size in the search
space, this study employed an evolutionary algorithm
(Deb 2009; Coello et al. 2007) as an optimisation tech-
nique. The algorithm is able to handle a large search
space and is also capable of avoiding local optima
during the search process. Each possible solution is
treated as an individual, and a set of individuals forms
a population. Such a population would evolve over a
number of generations where the population in the last
generation should hold the best solution (i.e. optimum
solution). Each individual in this work represents a
unique ESN design which consists of a set of locations
for sensor node deployment.

In an evolutionary algorithm, each individual will
be evaluated using a fitness function (i.e. objective
function), which in essence is a measure of the objec-
tive to be achieved during the optimisation process.
Such a function is used in the algorithm to assess each
individual generated in every generation. Individuals
with better fitness values would have a higher chance
of being preserved and included in the next genera-
tion. In this experimental study, the fitness function is
formulated as follows:

RMSE = 1

N · T

N∑
i=1

T∑
t=1

(xi,t − f̂ (xi,t ))
2 (4)

where

RMSE is the prediction error (calculated as a root
mean sum squared error).

N is the number of locations in the space
available for deployment (15,251 cells).

T is the number of seasons (i.e. four seasons).
xi,t is the average daily temperature data

retrieved from the baseline dataset at loca-
tion i in season t

f̂ is the interpolation function (as described in
Eq. 3)

f̂ (xi,t ) is the estimated value at location xi in sea-
son t given Y as a set of sensor nodes which
provide the known values for the interpola-
tion process

The objective of the optimisation procedure in our
study is to find a set of sensor node placements which
yield the lowest prediction error. An individual which
yields a lower prediction error is better (i.e. fitter)
compared to those which yield a higher prediction
error.

Experimental setup

We adopt the Distributed Evolutionary Algorithms in
Python (DEAP) (Fortin et al. 2012) as the framework
to implement evolutionary algorithms in our experi-
mental work. DEAP is an open-source evolutionary
computation framework developed at the Computer
Vision and Systems Laboratory of Universite Lava,
Canada. The parameter set we used for running the
algorithm is that prescribed by De Jong (Jong and
Spears 1990; Jong 2007; Yu and Gen 2010). The
complete parameter set is presented in Table 1.

In our experimental study, we simulate the
proposed method in three different setups. Each
experimental setup incorporates a different num-
ber of mobile platforms. We labelled the experi-
ments MS P04, MS P09, MS P16 to represent mobile

Table 1 Optimisation parameters

Parameter Value

Number of generation 1000

Population size 50

Crossover probability 0.6

Mutation probability 0.001

Selection operation NSGA2 (Deb et al. 2002)

Crossover operation One-point crossover

Mutation operation Uniform integer mutation

Seed number 0–19
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sampling conducted using 4, 9, and 16 mobile
platforms respectively. Since the proposed method
incorporates randomisation in both data sampling
and optimisation procedures, we run each exper-
imental setup with 20 different replications. For
evaluation purposes, we then measure the perfor-
mance of each optimum ESN design produced
by calculating the difference between the interpo-
lated data cube generated by the ESN and the
experimental dataset (described in section “Experi-
mental dataset”). Each experimental setup optimises
the placement for six different sets of sensor nodes: 4,
9, 16, 25, 36, and 49 nodes.

Some other methods are introduced in our exper-
imental study in order to compare them with the
proposed method. The first method implements the
same optimisation technique as the proposed method,
except the method is supplied with complete historical
data. Since randomisation also applied in the optimi-
sation process, the same number of replications (i.e.
20 replications) is applied for this experiment. In addi-
tion, the same sets of sensor nodes (i.e. 4, 9, 16, 25, 36,
and 49 nodes) to be optimised is applied in this exper-
iment. We then labelled the experiment HD which
represents the ESN design with historical data.

The second method uses a regular gridded place-
ment. In this method, a given number of sensor nodes
are placed in a gridded position with uniform dis-
tances. No replication is required in this experimental
setup since there is no randomisation involved in the
placement of the nodes. The experiment is labelled RG
which represents regular gridded placement. The same
number of sensor nodes is applied for this experiment.

We also incorporate experts’ domain knowledge as
a comparison to our proposed method. The experts
provide suggestions for the placement of certain num-
ber of sensor nodes in the RoI based on their knowl-
edge regarding the region. Some aspects related to
the domain knowledge are incorporated by the experts

while determining the placement of the nodes, namely
accessibility of the locations, physical characterisa-
tion of the locations, feasibility for deployment, the
possible cost for deployment, and future maintenance
in relation to the deployment location. For the pur-
pose of the experiment, the experts are asked to pro-
vide suggestions for the placement of 4, 9, and 16
sensor nodes. We then labelled the suggested node
placements as XP in our experimental setup. Table 2
presents a summary of the experimental setups con-
ducted in this study.

Results and discussion

The experimental part in our study commences by
simulating a number of mobile platforms to explore
and to sample temperature data in the RoI. The mea-
surement is conducted hourly basis over period of
30 days for each peak season (autumn, winter, spring,
and summer). The aim of this simulation is to have an
understanding of the transect pattern and the spatial
temporal coverage given a certain number of mobile
platforms. The coverage is influenced by the num-
ber of mobile platforms being employed. Employing
more mobile platforms will lead to a better spatial-
temporal coverage; however, it will also increase the
cost.

Baseline dataset

IDW is employed as the spatial data interpolation
technique to form a complete sampling cube. The
interpolated sampling cube consists of 24 interpolated
surfaces (two spatial dimension matrices), each sur-
face representing the spatial temperature for every
hour in a day. In this procedure, each cube aims to rep-
resent the overall spatial temperature in a particular
season over a 24-h period.

Table 2 Experimental
setup Experiment Number of mobile platforms Number of sensor nodes Number of replications

MS P04 4 4, 9, 16, 25, 36, 49 20

MS P09 9 4, 9, 16, 25, 36, 49 20

MS P16 16 4, 9, 16, 25, 36, 49 20

HD 0 4, 9, 16, 25, 36, 49 20

RG 0 4, 9, 16, 25, 36, 49 0

XP 0 4, 9, 16 0
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Further processing is then applied to each of the
interpolated cubes to produce a surface of average
daily temperature. Each of these surfaces represents
the average daily temperate in space in a particular
season. Figure 6 shows four surfaces which represent
the spatial daily average temperature in four differ-
ent seasons (i.e. autumn, winter, spring, and summer).
Since this study is aiming to construct an optimum
ESN design in the absence of historical data, these
four surfaces are then combined to form a baseline
dataset for the optimisation procedure.

Optimum ESN design

The optimum ESN design in our work is achieved by
minimising the interpolation error resulting from the
design in comparison to the baseline dataset. The pre-
viously constructed interpolated surfaces are merged
and utilised as a baseline dataset for the optimisation
procedure. An evolutionary algorithm is employed
to explore the search space and find the optimum

sensor node placement for a given number of nodes
(as described in section “ESN design optimisation”).

Figure 7 shows two examples of optimum ESN
designs resulting from the optimisation procedure
given four and nine sensor nodes. The figure clearly
shows how each design in our work is optimised
exclusively. The optimum ESN design formed by nine
sensor nodes is optimised independently and has not
been build based on the optimum ESN design formed
by four nodes. Therefore, it is not surprising to have
significant differences in these two ESN designs. The
locations which are selected to form the ESN design
with four sensor nodes might not be chosen in the
design with nine sensor nodes.

Evaluation

In order to evaluate the performance of our pro-
posed method, three different experimental setups
were established based on the construction of three
different baseline datasets (i.e. formed by employing

(a)  Autumn (b)  Winter

(c)  Spring (d)  Summer

Fig. 6 Interpolated surfaces of average daily temperature in
four different seasons (autumn, winter, spring, and summer).
The colour-bar on the right-hand side indicates the temperature

measured in degree Celsius. These surfaces are utilised as a
baseline dataset in the optimisation procedure
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(b)(a)

Fig. 7 Optimum placement of sensor nodes given four and nine sensor nodes (presented in Fig. 7a, b respectively). Each marker
represents the placement of one sensor node in the Region of Interest (RoI)

4, 9, and 16 mobile platforms). Each baseline dataset
is then utilised in the optimisation procedure to find
an optimum ESN design given 4, 9, 16, 25, 36, and 49
sensor nodes. Twenty replications are applied in each
of these experimental setup. The representativeness of

each ESN design produced is then assessed. The mea-
sure of representativeness in this evaluation procedure
is conducted by calculating the difference (i.e. error)
between the measured temperature stored in the exper-
imental dataset (described in section “Experimental

Fig. 8 ESN representativeness comparison resulting from an
experiment conducted based on three different baseline datasets.
The experiment setups were labelled MS P04, MS P09, and
MS P16; indicating the corresponding baseline dataset con-
structed using 4, 9, and 16 mobile platforms respectively. Opti-
mum ESN designs were searched according to a list composed

of six sets with different number of sensor nodes, with 20 repli-
cations applied to each set. The representativeness is calculated
based on the difference (i.e. root mean square error or RMSE)
between the actual data and the interpolated data produced by
the ESN design
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dataset”) and the interpolated data generated by the
ESN design.

The representativeness produced resulting from
three different experimental setups given several dif-
ferent number of sensor nodes is presented in Fig. 8.
The figure suggests that incorporating more sensor
nodes would certainly improve the representativeness
(i.e. lower the interpolation error). However, the rela-
tionship between the number of sensor nodes and
the resulting representativeness is not linear. Once
the design reaches a certain number of sensor nodes,
adding more nodes would result in a less significant
improvement. In this case, increasing the number of
sensor nodes from four to nine would lead to a higher
representativeness improvement compared to adding
nodes from 36 to 49.

Figure 8 also indicates a high variability in the
representativeness resulting from the use of a base-
line dataset constructed by four mobile platforms
while finding an optimum ESN design formed by four
and nine sensor nodes. Such a level of variability is
not found in the situation where a baseline dataset
is constructed by 9 or 16 platforms. However, no

significant differences in the variability occurred with
the use of a baseline dataset constructed by either 4,
9, or 16 mobile platforms to optimise an ESN design
consisting of 16, 25, 36, and 49 sensor nodes.

The designs produced by three experiment setups
(i.e. MS P04, MS P09, and MS P16) were used to
evaluate the success of the methodology. The design
created using the proposed methodology is compared
with other methods for deploying sensor nodes in
the RoI. Figure 9 shows the representativeness com-
parison with three other methods: optimised ESN
design with historical data, regular gridded sensor
node placement, and node placement based on expert
suggestion (i.e. labelled as HD, RG, and XP respec-
tively).

The figure indicates that designing ESN with the
support of historical data produces ESN design with
the best representativeness (i.e. lowest interpolation
error) compared to the other methods. In contrast, the
regular gridded placement generates ESN design with
the poorest representativeness among the other meth-
ods. This particular sensor node placement performs
poorly while incorporating only four sensor nodes. A

Fig. 9 ESN representativeness resulting from four different
methods in the design of ESN: ESN design optimisation utilis-
ing mobile platforms to construct a baseline dataset, ESN design

optimisation with historical data, regular gridded placement ,
and node placement based on the expert suggestion (i.e. labelled
MS, HD, RG, and XP respectively)
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remarkable improvement in regular gridded placement
can be achieved by increasing the number of nodes
from four to nine. The expert suggested placement
resulting to a significantly better representativeness
compared to the regular gridded placement given the
case of four sensor nodes. However, they perform
similarly when incorporating 9 and 16 sensor nodes.

Figure 9 suggests that in the absence of historical
data, our proposed method is able to produce ESN
designs which have the closest performance (i.e. rep-
resentativeness) compared to the other two methods
(i.e. RG and XP). However, our proposed method is
unable to incorporate factors which require domain
knowledge such as the physical characteristic of the
environment that could be used to determine the feasi-
bility for ESN deployment.

Conclusions

This study proposes a technique for constructing an
ESN design in a new region where historical data is
not available. Data sampling with mobile platforms is
proposed in this work as a solution to build an initial
knowledge (baseline dataset) of the RoI. An evolution-
ary algorithm then is employed to find an optimum
ESN design given a certain number of sensor nodes.
Each design is optimised exclusively according to the
assigned number of nodes. Therefore, it is expected
that two optimised ESN designs with slightly different
number of nodes may be significantly different from
one to another.
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