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ABSTRACT This paper proposes a method to address misreadings and consequent inadequacy of Radio-
Frequency Identification (RFID) data for social insect monitoring. Six months worth of field experiment
data were collected to demonstrate the application of the method. The data is transformed into a linear
combination of Gaussian model and curve-fitted using evolutionary algorithm. The results show that the
proposed method allows us to improve the quality of data that infer honey bee behaviour at the colony level.

INDEX TERMS Apis mellifera, RFID, Optimisation, Genetic algorithm, Curve fitting, Data quality

I. INTRODUCTION
Pollinators play an integral role in food production, respon-
sible for 1/3 of all commercial crop pollination, and with an
estimated value of up to USD$ 200 billion per annum [1],
[2]. Honey bees, bumble bees, and some European stingless
bees are exploited commercially as they are easily managed,
and live in colonies with large numbers of individuals. Yet
European honey bee (Apis mellifera) colony numbers in
Europe and North America especially have been reported to
decline over the last century [3]. Bee population decline has
a detrimental impact on food security, floral biodiversity and
abundance; the consequential impacts for the landscape as a
result of bee losses have come to the attention of researchers.

In addition to their value in agriculture, honey bees are
used as a model organism for a range of studies in neu-
robiology, including cognition, perception, vision, genetics,
and behaviour [4]–[6]. Understanding the behaviour of social
insects at an individual level is very challenging, as each
colony consists of a large number of individuals which,
within the same caste, are highly similar visually. The effec-
tive collection of data pertaining to the location of individuals
requires the unique identification of individuals by marking
or fitting identifiers to each target individual.

Tagging insects with microdots [7], colour patterns [8] and

QR codes [9] is commonplace in entomological research.
Karl von Frisch, the Nobel Prize winner in Physiology or
Medicine for 1973, painted bees to reveal the algorithm
associated with the waggle dance of honey bees [10]. This
approach is also known to have been used by Charles Dar-
win [11]. While extremely useful and relatively cheap, the
use of microdots, QR codes and painting insects are time-
consuming and labor intensive procedures, requiring either
direct human observation or image recording and sophisti-
cated processing.

More recently radio-frequency identification (RFID) de-
vices have been applied to social insects [12]–[14]. In fact,
RFID has become a popular tool in entomological research
in the last decade and is being widely used in bee research
groups in Europe [12], [15]–[20], North America [21], [22],
China [23], [24], and Australia [25].

The main advantages of this technology are that thousands
of bees in a single hive can be tagged so as to be individually
identifiable, by a small number of operators and relatively
quickly. Readings can be be recorded constantly and without
excessive human intervention. However, RFID technology is
known to fail when collecting information on bees passing
through gates (e.g. hives or feeders). This is likely to be
caused by the short-range of reach of the antennas, and
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bees flying too fast in and out of the hives and feeders.
Furthermore, the orientation and spatial positioning of bees
as they enter hives could also cause misreadings due to the
polarisation of some RFID tags. A number of studies have
reported the success rate of such systems when reading insect
RFID tags, with results varying depending on, for example,
experimental setup, reader capabilities, RFID tag (i.e. an-
tenna) size, duty cycle, and the power of the electromagnetic
signal. Here, we categorise the performance of the reader as:
low (i.e. less than 80% success readings) [26], medium (i.e.
between 80% and 90%) [21], [27], or high (i.e. greater than
90%) [12], [18] read efficiency. As a consequence of a low
reading success rate, it becomes difficult to interpret what
behaviour an individual bee was involved in and the duration
of that bee being inside and/or outside the hive.

Other concerns associated with tagging small insects are
the additional weight of the tag, and the alterations necessary
to the hive entry to accommodate readers and antennas. Be-
cause most social insects have a short adult lifespan, typically
from a few days to a couple of months, studying them with
the assistance of tags requires regular visits to colonies.
As a consequence hives are opened regularly, changing the
internal environment, stressing the colony as a whole and
killing some of the insects in the process. Some insects are
extremely sensitive to odours emitted by glues, and therefore
insects fitted with tags may be attacked by other individuals.

Despite these limitations, RFID tagging of insects is be-
coming the most practical available tool to investigate indi-
vidual behaviour in a colony on a large scale. Using RFIDs
is now more popular and, despite missing some readings, the
behaviour of the colony can be reasonably well captured in
those experiments using electronic tags.

In this paper, we estimate the number of bees engaged in
three different behaviours (e.g. by the entry, short mission,
and foraging) by applying a classification method to the en-
tire colony’s activity data as tagged bee pass readers mounted
at the hive entrance. This work addresses the key limitation
of one popular method in the electronic tagging of social
insects: lost readings do not allow accurate interpretation of
individual behaviour.

The main contribution of this paper is the development
of a method that allows the estimation of how many active
bees in a hive will likely be foraging at a given moment
(e.g. 3:30pm) or within a given time period (e.g. between
10 am and 2 pm). Here, “foraging” refers to those activities
bees undertake in order to search for and collect resources
for the colony, mainly food resources such as nectar and
pollen, as well as hive resources including water and resin.
The activities include searching for new food sources as well
as exploiting current ones that the bee knows about, either as
a result of previously visiting the source or by observing a
waggle dance performed by another bee that has visited the
source.

The paper is structured in the following manner: Section
2 describes the methodology and Section 3 presents the
experimental results obtained. A discussion and conclusion

will be provided in Section 4 and Section 5, respectively.

II. MATERIALS AND METHODS
A. FIELD EXPERIMENT
The dataset utilised for this work was obtained from a field
experiment conducted in Tasmania, Australia. We set up four
beehives with a radio-frequency identification (RFID) reader
installed at each hive’s entrance, as illustrated in Figure 1a.
We visited the hives on a regular basis (e.g. once or twice
a week) to tag bees with RFID tags (Section II-B). Using
this setup, the bee passes through the hive entrance and is
detected at a particular reader (Figure 1b); the individual
detected, and the date and time of detection are recorded. The
data is organised in individual daily CSV files, based on UTC
time.

B. BEE TAGGING
Adult worker bees were tagged at the hive using 2.5 × 2.5
× 0.4 mm RFID tags (Hitachi Chemical, Japan) secured to
the thorax using cyanoacrylate super glue (Cyberbond LLC,
Batavia, Illinois, USA). Each tag weights 2.4mg, one-third
of an adult honey bee’s maximum foraging weigh. Live bees
were restrained against the honeycomb using a modified
dissection probe, by applying gentle pressure between the
thorax and abdomen. The tag was applied on the thorax
between the wings, ensuring that both wing pairs were free
before releasing the bee. The bee was then observed to be
able to fly prior to proceeding to the next bee. Each tag is
coded in hexadecimal format with a unique bee identification
number, consisting of a range of parameters including the
country in which the experiment is taking place, the hive
number within an apiary the bee originated from, and the
bee’s species, strain, and caste.

C. CLASSIFICATION OF BEE BEHAVIOURS
Bee activity is, for the purpose of this paper, the detection
of a bee fitted with an RFID tag passing through the entry.
Bee behaviour is the interpretation of what the bee was
actually doing. The assessment of what behaviour a bee
was exhibiting usually needs to take into account several
successive RFID detections.

The daily activity of bees is greatly affected by external
factors, especially the weather, and in particular temperature,
precipitation, solar radiation, and wind speed [28]. If, for
example, the hive becomes too hot, bees can leave the hive
and “beard" at the entrance, or use their wings to ventilate
at the entry of the hive. If the temperature is too low (i.e.
typically below 10oC) bees will not leave the hive, and
instead form a cluster on the comb of the brood nest to
maintain the optimal brood temperature of 34.5oC. Bees do
not fly during storms or during high wind speeds. If the
external temperature is mild and on a sunny, calm day, bees
will likely be found foraging in large numbers.

Either by observation or experience, honey bee activity
data can be classified here into four behaviour categories:
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(a) Bee hive entrance (b) Reader at the hive entrance

FIGURE 1: The bee experiment conducted at Geeveston, Tasmania: (a) hive entrance; and (b) RFID reader installed underneath
the entrance that detects the passage of tagged bees

By The Entry (BTE): Bees classified as being "by the en-
try" are those with successive detections of the same
bee by an RFID antenna at a maximum time interval
between successive readings of less than three minutes.
For example, a bee could be by the entry for 30 minutes,
and it will be classified as BTE provided successive
readings are within three minutes or less. This behaviour
is usually associated with hive maintenance, including
cleaning and control of hive temperature, defense, or
after returning from a foraging trip [29]–[31].

Short Mission (SM): Bees engaged in short missions are
those with successive detections intervals between three
and six minutes. This means the bees left the entry
for a period of time no longer than six minutes. Bees
engaged in short missions are those believed to be mak-
ing short orientation or defecation flights, inspecting the
surroundings, or engaged in defense activity [32].

Foraging (FG): Bees will be classified as foraging when the
gap between successive detections is longer than six
minutes. During the day, a bee may be detected many
times and, in most cases, the time intervening between
the first and last detections of the day will be considered
foraging, except when successive readings indicate the
bee is by the entry or on short missions. Bees with
recorded first and last detections will only be considered
as foraging between sunrise and sunset. Foraging peri-
ods almost certainly incorporate periods of time when
bees return from the field and stay inside the hive before
going out again. Foraging is a crucial behaviour of
bees and can be associated with different roles: scouts,
which spontaneously search for new food/water sources;
exploiters and water carriers are individuals that make
repetitive flights to food and water sources, respectively;
recruits are individuals that search for food sources
with a prior awareness of the approximate location of
the source after observing a waggle dance [32]–[34].
In principle, using RFID technology, bees should be
detected at every instance of leaving and returning to
the hive and this would provide some insight into the

duration bees spent foraging and how long they stay
inside the hive before leaving again. However, misread-
ings of RFID systems make this task practically impos-
sible. A way to overcome this difficulty is to associate
the sporadic detection of bees to a foraging behaviour.
Therefore, the bee will be engaged in foraging activities
for a long period of time, comprising several missions.
Rather than recording each mission as a discrete event,
the overall behaviour is defined as a foraging role.

Departed bees (DB): Bees that leave the hive and never
return, either because they die or because they swarm
(including absconding) [35], [36]. Swarming was not
observed in our hives during the experiment.

Table 1 presents a summary of bee behaviours as described
above. For the purpose of this work, we also performed
data curation to filter out erroneous data in accordance with
empirical study based on field observations and an initial
investigation of the data. One of the main issues relates
to continuous readings with extremely short time intervals
(according to our rules, this is classified as BTE). This can
happen when a dead bee, with its RFID still attached, is
located within the reading range of the reader. To overcome
this, we configured the software in such a way that BTE reads
with a duration of more than 30 minutes were discarded.
Similarly, FG durations of more than six hours were omitted,
as this is most likely attributable to instances of missed
readings.

The classification criteria for bee behaviour proposed
above can be altered to accommodate other users’ needs,
without further limitations to the model implemented in the
current work. For example, if a beekeeper or an entomologist
understands their bees are at the entry for no longer than two
minutes, it is possible to change the model to incorporate this
observation. These behaviours are described for the European
honey bee, Apis mellifera, and are not necessarily the same
for other bee species.
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Bee Behaviour Summary description

By the entry (BTE) Successive readings of the same bee within less than three minutes
indicates that this particular bee is near the RFID reader.

Short mission (SM)
Individual bee engaged in an activity of short duration (i.e. between three
and six minutes). For example, making orientation or defecation flights and
inspecting the hive surroundings.

Foraging (FG)
Individual bee engaged in activities to search for or exploit food/water
sources. Example bee roles undertaking such activities are: scout,
exploiter, recruit, water carrier.

Departed bee (DB) The last detection of a bee in its lifetime.

TABLE 1: Categorisation of bee behaviours using RFID data. These behaviours reflect the duration of and time between
consecutive readings and are used to report the most relevant results.

D. INTERPRETING BEE POPULATION BEHAVIOUR
The behaviours described above are applied to the recordings
of bee activities to identify the behaviour of each individual
bee. After this step, a collective distribution for each bee
behaviour is generated. The diurnal distribution of all of the
inferred behaviour categories over the whole dataset resem-
bles normal distributions (Figure 4). The resulting histogram
is least-squared curve fitted using a Gaussian model (Section
II-E).

The proposed method considers the overall activity as a
linear combination of each type of possible activity (i.e.
Gaussian Mixture Model) related to bee behaviour. There-
fore, the linear combination of Gaussian curves can be writ-
ten as:

GALL = α GBTE + β GSM + θ GFG (1)

where each component of this equation is a Gaussian curve
(G) expressed as:

G(x,BKG, I, Tµ, Tσ) = Ie
− (x−Tµ)2

2 T2
σ +BKG (2)

where x is the data point (time of day in this case) to be
estimated,BKG is a given background, I is the intensity, and
Tµ and Tσ are the mean and the standard deviation of the dis-
tribution respectively. The parameters (α, β and θ) represent
the relative number of bees involved in different behaviours
within the colony, calculated using the area under the curve
for different Gaussian Probability Density Functions (PDFs).

For the purpose of this work, Gaussian parameters to be
curve-fitted are as follows:

i Background-effect (BKG): The data ‘normalisation’
which ensures that the PDF to be curve-fitted complies
with the shape of a distribution. This is needed because
brief visits to the hive entry (BTE and SM) occur
regularly at night time. They are associated with bee
defense or bees working to better climatise the colony
(e.g., temperature or moisture control). Such events
are considered a background (BKG) activity and are
homogeneously distributed during the entire day and
night. An example of such phenomena can be observed

in Figure 4, where BTE detections occur between the
hours of sunset and sunrise.

ii Intensity (I): The height of the PDF indicating the
overall probability of a particular activity taking place.

iii The average of time in a day (Tµ): The time of day in
which a particular bee activity is most likely to occur
(highest I).

iv The standard deviation of time of day (Tσ): The spread
of the PDF of bee activity in a day.

Curve fitting is performed with the experimental data to
determine the parameters of the Gaussian curves and their
relative contribution to the overall distribution of behaviour.
Once the curve fitting is achieved, two key questions can be
answered:

1. How many bees are performing a given behaviour at a
given moment of the day? This is determined by the
relative intensity of each curve at the moment of interest.

2. How many bees are performing a given behaviour dur-
ing a given period of the day? This is determined by
calculating the area under the curves during the period
of interest.

E. CURVE FITTING USING GENETIC ALGORITHMS
Genetic Algorithm (GA) is a meta-heuristic method to gen-
erate a near-optimal solution for an optimisation problem by
evolving a pre-defined genetic representation (i.e. chromo-
some design), using natural selection process (e.g. selection,
crossover, and mutation), towards a better solution. The
following sub-sections discuss the requirement to perform
GA in detail: (i) data notation; (ii) parameter initialisations
and constraints; (iii) chromosome design; and (iv) fitness
function.

1) Data Notation
First of all, we discuss the procedure we use to formalise the
problem (Figure 4) in a mathematical way, and the notations
to be used within the following sub-sections. The dataset is
divided into two levels:

i Bee behaviour. Let A = {a1, a2, a3} =
{BTE, SM,FG} be a list of distinct behaviours with
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I = 3 as discussed in Section II-C.
ii Time of day. The time (t) in a day T =
{t1, t2, · · · , tj , · · · , tJ} which is associated with its bin
counts. In this work, we analyse the data in 30-minute
intervals within a day resulting in J = 24hr÷30min =
48 elements.

Based on the categorisation procedure above, we can now
represent our dataset as:D = {d1,1, d1,2, · · · , di,j , · · · , dI,J}
with each datum (di,j) representing the count/frequency of
activity occurred at ith activity A and jth time of day T . A
summary of these notations is given in Table 2.

We further denote dataset representations so that we could
specify the particular category to obtain a sub-set of data
from it. To illustrate this, some examples are shown below:

D = {d : d ∈ D}
= {d1,1, d1,2, · · · , di,j , · · · , dI,J}

Di = Di=x

= {d : d ∈ D ∧ i = x}
= {dx,1, dx,2, · · · , dx,j , · · · , dx,J}

Dj = Dj=y

= {d : d ∈ D ∧ j = y}
= {d1,y, d2,y, · · · , di,y, · · · , dI,y}

where x and y are artificial notations that depend on user
input. Such representations will be used in the following sub-
sections.

Since this work is based on a ‘data-driven’ modelling
process, it is necessary to calculate the ‘importance’ of
each datum in order to compute the mean µ and standard
deviation σ of a particular activity’s occurrence within a
day. Therefore, the significance (denoted by the ‘weight’
W = {w1, w2, · · · , wj , · · · , wJ}) of each datum (i.e. time
index in day T ) corresponds to the data availability (di,j) and
is addressed by utilising the weighted mean (µ∗) and standard
deviation (σ∗) equation as below:

µ∗(V,W ) =

∑N
i wi · vi∑N
i wi

(3)

σ∗(V,W ) =

[∑N
i wi · (vi − µ∗)2∑N

i wi

] 1
2

(4)

where V is a list of data with each datum denoted using vi
(i.e. V = {v1, v2, · · · , vn, · · · , vN}).

2) Initial Parameters Estimation and Constraints
The BKG-effect is estimated using the mean value of data
Di (i.e. ith activity A) that holds the minimum Coefficient of
Variation (CV) of the first nfirst and last nlast data within
time of day:

argmin
nfirst,nlast

CV
(
(Di)nfirst ∪ (Di)nlast

)
(5)

where nfirst datum (Di)nfirst = {Di,j=y : y ∈ Z ∧
y ≤ nfirst} and nlast datum in time-of-day (Di)nlast =

{Di,j=y : y ∈ Z ∧ nlast ≤ y ≤ J}. Thus, the BKGi at
activity i is obtained by:

BKGi = µ
(
(Di)nfirst ∪ (Di)nlast

)
(6)

and its constraint:

C(BKGi) = σ
(
(Di)nfirst ∪ (Di)nlast

)
(7)

where µ() and σ() corresponds to the minimised Equation 5.
Then, let time Tfirst,last = {tx ∈ Z ∧ nfirst <

y < nlast} be a sub-set of T and its corresponding
datum Ui = {Di,j=y : y ∈ Z ∧ nfirst < y <
nlast}. The remaining parameters for individual Gaussian
Gi of distinct activity (ai) are estimated in the following:

Estimation
Ii µ({u : u ∈ Ui ∧ u ≥ Ui,unq,(n−2)})

(Tµ)i µ∗({Tfirst,last, Ui})
(Tσ)i σ∗({Tfirst,last, Ui})

Constraint
Ii σ({u : u ∈ Ui ∧ u ≥ Ui,unq,(n−2)})

(Tµ)i 30min

(Tσ)i σ∗({Tfirst,last, Ui})÷ 2
where u denotes each datum within Ui and Ui,unq,(n−2) is
the third largest ‘unique’ value within Ui (represented using
an order statistic). Lastly, note that the lower and higher
boundary (search space) for the optimisation is in the form:

Clo = Estimation− Constraint
Chi = Estimation+ Constraint

(8)

3) GA’s Chromosome Design

Also called chromosome encoding and decoding, is a crucial
step required to quantify the problem into an ‘individual’
for the optimisation process. In this work, we designed a
single individual using the following approach [37], [38]:
Based on Equation 1, a complete distribution of the data
consisting of I = 3 activities (BTE, SM, and FG) and
4 parameters (BKG, I, Tµ and Tσ , as in Equation 2) is
required to generate one single Gaussian distribution. There-
fore, in our case, one individual will consist of 12 elements
(3 activities × 4 parameters) with values between 0 and
1. In order to decode the value of a particular element within
the individual, the following equation is employed:

p(x,Clo, Chi) = Clo + x · (Chi − Clo) (9)

where x and p are the encoded and the decoded value of
a particular Gaussian parameter respectively; Clo and Chi
are the constraint values calculated from the previous section
(Equation 8). Figure 2 demonstrates the design of a single
individual with a decoding example for a parameter I of the
Gaussian distribution Gi.
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Set Notation Description
Representation

Item Index Example

A Bee Activity ai i, · · · , I A = {a1, a2, · · · , ai, · · · , aI}
T Time of day tj j, · · · , J T = {t1, t2, · · · , tj , · · · , tJ}
D Dataset di,j D = {· · · , di,j , · · · , dI,J}

TABLE 2: Summary mathematical representations for the data set (D).

FIGURE 2: An illustration of the chromosome design utilised
in this work, where each element within the individual holds
a value between 0 and 1, and B denotes the background
(BKG). An encoding and decoding example for the intensity
(Ii) parameter of distribution Gi is also presented. In this
case, assume that we have element Ii with value 0.7615
(encoded) within the individual which is equivalent to 205.32
(decoded) after applying Equation 9.

4) Fitness function
The quality of a particular individual is assessed by minimis-
ing the sum of the chi-square (χ2) function [37] for different
bee activities:

fitness =
I∑
i

χ2
i (10)

χ2
i =

1

J −Np

J∑
j

(di,j −Gi,j)2

di,j + 1
(11)

where J is the number of elements in a day (see Table 2);
Np is the number of parameters to be optimised (four in this
case); and Gi,j is the estimated value using Gi at time tj .
Note that the + 1 within the denominator on the right-side
of Equation 11 is employed to avoid a divide-by-zero error,
which could occur if the number of data points was extremely
low.

III. EXPERIMENTAL RESULTS
This section provides the results obtained from the exper-
iment. Figure 3 depicts the overview throughout the entire
experiment, commenced on April 2nd and ended on Novem-
ber 11th, 2014. During the period, a total of 2,425 RFID
tags were deployed; however, only 1,101 bees fitted with
RFIDs were detected at least once after being tagged. Such
a phenomenon can be explained by: (i) misreadings of the
RFID system; (ii) the tag was not fitted properly so that
the bee was able to remove it; and (iii) tags lost during
the tagging process resulting from environmental conditions
(e.g., on a windy day). The number of bees alive increases on

the day our team members make a field visit to tag bees, and
it is shown that approximately 30% of the tagged bees will
be detected at least once on the following days.

Although data was collected between April and November,
the analyses in the following sections were only undertaken
on data collected between May and October to accommodate
for the build up and decline of tagged bee numbers in the
instrumented hives as shown in Figure 3, allowing for more
robust results.

A. BEE ACTIVITY
Eight months of experimental data from 1,101 bees were
recorded in CSV files. Bee detections were classified using
the previously established rules (Section II-C) in order to as-
sess each bee’s behaviour at a given time. Once the behaviour
was determined, the data were grouped according to the time
of day the activity occurred.

The daily distribution of bee behaviour over the period of
eight months is shown in Figure 4. The figure shows that
bee activity starts to increase at approximately 7 am, and
declines at approximately 8 pm. During that period, bees are
most active between 12 pm and 1 pm. It is also observed that
there are some detections before and after 7 am and 8 pm
respectively which have been classified as by the entry. The
analysis in this work removes Australian daylight savings
time for consistency across data.

Figure 5 shows when bee activity is assigned to the cat-
egory ‘departed bee’. Departed bees are those that left the
hive and never returned. Occurrences after sunset and before
sunrise are likely to be associated with bees that died inside
the hive and were transported out by worker bees.

B. CURVE FITTING
Figure 6 shows the result for the curve fitting of each
behaviour (by the entry, short missions, foraging) for the
entire period of the experiment. The sum of each behaviour
overlaps relatively well with the overall bee activity (black
dots). It suggests that bees start foraging at approximately 7
am and finish at 8 pm. Around noon (between approximately
12 pm and 1 pm), most bees are involved in foraging role (e.g.
exploiter, recruit, scout, water carrier); followed by by-the-
entry activities (e.g. hive defense, temperature control); and
lastly, on short missions (e.g. orientation flights, wandering
around the nest).

The proportion of bees involved in different behaviours
varies relative to time of day. Therefore, a normalisation
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FIGURE 3: Summary information of field visits for tagging bees and daily number of bees alive throughout the experiment. In
this case, the lifespan of an individual bee (referred as ‘alive’ bee) is estimated from the first day it was tagged until the very
last day of its detection.

FIGURE 4: Cumulative plot of six months experimental data, illustrating bee behaviour distributions throughout the day.

FIGURE 5: Daily distribution of events associated with departed bees. These are events where bees are detected for the last
time. The events occurring between dusk and dawn are likely to be of bees that died inside the hive and were transported out of
the hive by other workers.
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FIGURE 6: A visualisation produced by the curve-fitting program developed for this work that demonstrates the Gaussian PDF
of distinct bee activities in a day. The x-axis shows the time of day and the y-axis is the frequency/count of activities. The
dots (in different colours corresponding to the histogram values in Figure 4) represent the data to be curve fitted with BTE,
SM, FG denoted in blue, green, red respectively. The solid lines are the curve fitted Gaussian PDFs for isolated activities
(GBTE , GSM , GFG) and the combined ones (GALL in black dashed-line) where the curve fitting used the optimisation
approach proposed in this work (Section II-E).

FIGURE 7: The proportion of bee behaviours relative to time of day.

of the curve fitted Gaussian PDF (Figure 6) is depicted in
Figure 7. The normalised curve reveals that approximately
80% of the workers within the colony are engaged in BTE
and ≈ 20% are in SM during early morning (before sunrise)
and late at night (after sunset).

C. BEE BEHAVIOUR
Once each individual bee behaviour has been initially in-
terpreted and following the curve fitting process, we can
determine the proportion of bees performing a specific task at
a given moment of the day or during a specific period of the
day. If we consider the cohort of bees fitted with electronic
tags to be representative of the entire bee population in a hive,

it is possible to estimate how many bees would be engaging
in, for example, foraging activities.

The result shows the proposed method is reasonable and
the area under each curve should represent the number of
bees undertaking distinct behaviours throughout the day.
Monthly proportions (from May to October) of bees foraging,
in short missions or by the entry are shown in Figure 8
and values of the Gaussian parameters summarising this data
are given in Table 3. Figure 8 shows an overall increase of
foraging behaviour in the long term, and a decrease in by the
entry behaviour and short missions. Also, it shows that the
data availability dropped significantly in July, most probably
due to the markedly decreased temperature during the winter
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FIGURE 8: The proportion of bee colony behaviours for different months. The histogram (in yellow) presents the data
availability for each month.

Month
Gaussian Parameter

Area (%)
BKG I Tµ Tσ

(Counts) (Counts) (hh : mm) (minutes)

M
ay

BTE 0.27 61.85 12:50 97 23.3
SM 0.00 18.93 12:56 87 6.2
FG 0.00 207.54 12:29 90 70.5

Ju
n BTE 0.27 114.60 13:05 83 22.6

SM 0.00 32.98 12:59 72 5.5
FG 0.00 425.04 13:01 72 71.9

Ju
l BTE 0.19 44.62 12:55 73 20.0

SM 0.00 10.74 13:00 77 4.9
FG 0.00 184.88 12:53 69 75.1

A
ug

BTE 0.21 53.98 12:44 88 12.0
SM 0.00 17.34 13:02 76 3.3
FG 0.00 431.68 12:54 79 84.7

Se
pt

BTE 0.28 37.08 12:38 140 18.3
SM 0.07 8.03 11:48 143 4.1
FG 0.00 192.08 12:27 118 77.6

O
ct

BTE 0.37 13.49 13:21 125 9.2
SM 0.04 4.11 13:19 97 2.1
FG 0.00 147.31 12:48 124 88.7

TABLE 3: Gaussian parameter values for each month of data reported in Figure 8. The ‘Area(%)’ column indicates the
percentage of detections recorded of bees undertaking particular behaviours, relative to the total detections for that period.
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Bee Behaviour Activities Threshold Duration Certainty

By the entry High frequency readings, defense, air
conditioning of hive x ≤ 3min

1sec < x ≤
30min

High

Short mission Orientation flights, walking around the hive 3min < x ≤
6min

3min < x ≤
6min

Medium

Foraging Collecting/depositing food/water, scouting for
new food resources x > 6min 6min < x ≤ 6hr Low

Departed bee Last detection of an individual, e.g. dead bee – – High

TABLE 4: Summary of the proposed bee behavioural model and its level of certainty for insects monitored under the current
empirical study. The ‘Threshold’ column gives the cut-off points for two successive readings within the classification procedure
for the raw bee detection data; whilst, the ‘Duration’ column indicates the range of valid bee behaviour durations. For instance,
BTE durations of more than 30 minutes will be omitted.

period in Tasmania (as further discussed in the Discussion
section).

Furthermore, based on Table 3, the standard deviation
of the Gaussian parameter (Tσ) during winter period (i.e.
June to August) is lower compared to other months (e.g.
Tσ < 80min overall). This was probably caused by (i)
lower temperatures during the winter months that reduces bee
activity, and (ii) the fact that the sun rises later and sets much
earlier than in other seasons [28], [39].

IV. DISCUSSION
RFID systems where readers are installed in the field with
limited power availability, operating with high reading fre-
quency to capture every potential bee tagged leaving or
returning the hive, in confined spaces like a beehive entry
and with tags small enough to fit on bees are operationally
challenging. Missing readings were inevitable and this fact
makes the interpretation of each individual bee behaviour
very difficult. This work addresses this problem by devel-
oping a method that assigns a behaviour for each bee based
on roles and extrapolates that behaviour for a cohort of bees
doing the same activity.

Foraging behaviours were restricted to daylight hours, typ-
ically between 5 am and 8 pm; our data correlates well with
nature, as bees will not forage when ambient temperature or
solar radiation levels are too low. Additionally, the proportion
of bees undertaking various behaviours varies over the course
of the day. An increased probability of bees undertaking short
missions and remaining by the entry is seen during the hours
when bees are not actively engaged in foraging activities.
This is likely due to forager role plasticity resulting in the
reallocation of foragers to defensive or hygienic roles, or
simply a matter of proportions altering as numbers of bees
engaged in BTE and SM increases relative to FG (Figure 7).

Not only was activity variable over the daily cycle, but
our six months of data include a distinct shift in behaviour
over the long term (Figure 8). The bee tagging period was
commenced in April and terminated in October. In April and
November tagged bee numbers within the hives were much
lower than in the intermediate months as a result of tagged

populations becoming established and dying out respectively
(Figure 3). As a result of this, only data from May to October
was included in the analysis. A significant decrease in read-
ings was observed in July (Figure 8) due to predominantly
cold weather, higher rainfall, and decreased solar radiation
when compared to the months of September through April.
Furthermore, a proportional increase in foraging behaviours
was observed over the course of the experiment. This may be
due to an improvement in operator skill over time, resulting in
more efficient tagging and a reduction in tagging-associated
mortality, or adjustment of the colony to the colder winter
temperature after the initial shock in July. Increased activity
is expected, and observed, concurrent with the increase in
temperatures into the spring months.

Bee behaviour classification can be interpreted on the
basis of the frequency of readings. By considering issue of
misreadings in the RFID system, we are able to define the
levels of certainty for the behavioural characterisations in our
proposed model (Table 4).

High frequency reads are associated with the constant
presence of a bee by the colony entry. This leads to a high
degree of certainty about the assignment of a behaviour of a
bee to be ‘by the entry’ or ‘short mission’. A departed bee
is also very clear as the last recording of a bee could be
confidently assigned as a bee that never returned to the hive.

The foraging behaviour of bees is, by its very nature,
complex. Bees could leave and return to the hive in missions
lasting as long as an hour (and possibly longer) several times
in a day. If the RFID system does not miss any readings,
we would be able to confirm with absolute certainty when
the bee left the hive, and when the same bee returned. We
would also be able to say how long the bee was inside
the hive between outdoor missions and for how long each
mission lasted. When a single reading is missing, however, it
becomes almost impossible to determine the bee’s behaviour
at a given time with absolute certainty. With our approach
we are able to estimate with some degree of confidence
when the bees were engaged in foraging activities. This is
possible because our rules are defined in such a way that
single readings exclude BTE behaviours, and long durations
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FIGURE 9: Screenshot of a visualisation tool developed to analyse individual bee activity using the bee behaviour classification
described in Section II-C. Each row represents a day that the bee was active (i.e. detected at least once in that day); and the
horizontal axis is the time of day, showing the times at which different bee behaviours occurred. Within each day, the times of
sunrise (yellow) and sunset (green) are also indicated. For this example, the coloured bars represent: (i) blue bar in the first row,
the day the individual was tagged; (ii) red, single detection in that day; (iii) light blue, by the entry; (iv) orange, short mission;
and (v) purple, foraging period.
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between readings exclude SM behaviours, leaving only FG.
Figure 9 illustrates an example of an effort logging record

throughout the lifetime of an individual bee. In this instance,
this bee was tagged on 13th August 2014 at Hive 001 and
last detected on 31st August 2014. It is very likely that this
bee was tagged when it was very young because: (i) a ‘single
detection’ is observed on August 14th and 17th; and (ii) the
bee started to forage on 18th August, despite the fact that it
was tagged on August 13th. This bee is very likely to be a
forager (e.g., scout, recruit, exploiter) throughout its lifetime.
Note that the ‘partitioned’ foraging period indicates that there
were detections with more than six minutes intervals between
successive readings within its foraging period. This could, for
example, be explained by assuming that the bee was either
out exploiting food sources during these intervals or that it
was in the hive depositing nectar or pollen before undertaking
further foraging activities.

V. CONCLUSIONS
The proposed method allows for a robust use of data from so-
cial insect monitoring based on RFID devices. Misreadings,
which are common in RFID-based experiments, can be better
managed by combining insect behaviour with activity data.
The classification proposed in this paper (Section II-C) is
based on results reported in the literature and on observation
of our bees. However, depending on different bee species or
other factors, it is possible to change the software configura-
tion (i.e. model parameters) associated with bee activity.

Under traditional techniques, once the detection of the
insect fails, RFID data become useless. The proposed method
addresses this problem by assigning a given behaviour for
each tagged insect, then combining results for the entire
tagged population using curve fitting based on genetic algo-
rithms.

One limitation of this work is the inability to determine the
number of data required in order to have a good representa-
tion of the results. For example, the curve fitting of monthly
data (Section III-C) does not include April and November
because those months do not have enough bee activity data
for the curve-fitting purposes. Another limitation is the fact
we have a small number of hives which limits the replicability
of the experiments. And finally, the ideal calibration is to
have another independent method to determine the activity
of the bees. While we have scales in some of the hives, a
camera, and an image processing technique could be used
to determine when the bees leave and return as a mean to
calibrate our results. Such an approach will be used in the
future.

The method proposed in this paper could be used by other
research groups using RFID to study social insects to better
analyse the RFID data and overcome the issue of missed
readings which are commonly experienced with electronic
tagging. This has an important and positive implications
for those using RFID data in insect behaviour modelling.
Study in the design of environmental sensor networks which

involves animal-borne instruments as mobile sensor nodes
[40] could also benefit from this work.
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