Calls For Papers About the FFE

FRONTIERS IN FINANCE AND ECONOMICS

Search

HOME » ONLINE PAPERS

Online Papers

dvertisements

my earnings with WordAds

Interest Rate Risk in a Negative Yielding World

Joel R. Barber, Krishnan Dandapani – Frontiers in Finance and Economics – December 2017 – Vol 14 N°2, 1-19

Components of Economic Policy Uncertainty and Predictability of US Stock Returns and Volatility: Evidence from a Nonparametric Causality-in-Quantile Approach

Nikolaos Antonakakis, Mehmet Balcilar, Rangan Gupta, Clement Kyei - Frontiers in Finance and Economics - December 2017 - Vol 14 N°2, 20-49 Market Integration and Informational Efficiency of Africa's Stock Markets

Godfred M. Aawaar, Devi Datt Tewari, Zhiyong (John) Liu - Frontiers in Finance and Economics - December 2017 - Vol 14 N°2, 50-84

Uncovered Interest Parity, Purchasing Power Parity and the Fisher effect : Evidence from South Africa

Dennis Machobani, Gideon Boako, Paul Alagidede - Frontiers in Finance and Economics - December 2017 - Vol 14 N°2, 85-131

Relative Compensation and Forced CEO Turnover

Shahbaz Sheikh - Frontiers in Finance and Economics - June 2017 - Vol 14 Nº1, 1-28

The Dynamics of Market Efficiency: Testing the Random Walk Hypothesis in South Africa

Dr. Yudhvir Seetharam, Prof. Christ Auret, Prof. Turgay Celik - Frontiers in Finance and Economics - June 2017 - Vol 14 N°1, 29-69

Psychological Barriers at Round Numbers in Single Stock Prices: Evidence from Three Developed Markets

Júlio Lobão, João Fernandes - Frontiers in Finance and Economics - June 2017 - Vol 14 N°1, 70-111

Asymmetries in Yield Curves: Some Empirical Evidence from Ghana

Bernard Njindan lyke - Frontiers in Finance and Economics - June 2017 - Vol 14 N°1, 112-136

Dividends and Stock Prices: A Fresh Look at the Relationship

Dilip K. Ghosh, Dipasri Ghosh, Arum J Prakash - Frontiers in Finance and Economics - December 2016 - Vol 13 N°2, 1-18

Transitory and Permanent Volatility Components in the Main US ETF Markets: An Empirical Analysis

Chi-Hui Wang, Chia-Hsing Huang, Prasad Padmanabhan – Frontiers in Finance and Economics – December 2016 – Vol 13 N°2, 19-40

Improving Exchange Rate Forecasting with a Kalman Filter: Using Less Information to Obtain Better Forecasts

Ulrich Haskamp - Frontiers in Finance and Economics - December 2016 - Vol 13 N°2, 41-73

Predicting South African Equity Premium using Domestic and Global Economic Policy Uncertainty Indices: Evidence from a Bayesian Graphical Model

Mehmet Balcilar, Rangan Gupta, Mampho P. Modise, John W. Muteba Mwamba – Frontiers in Finance and Economics – December 2016 – Vol 13 N°2, 74-105

Military Spending and Economic Growth: Evidence from the Southern African Development Community

Mduduzi Biyase, Talent Zwane - Frontiers in Finance and Economics - December 2016 - Vol 13 N°2, 106-122

Is a Necessary Good Necessarily an Inferior Good? Slutsky Equation is Re-examined

Dilip K. Ghosh, Hamid E. Ali, Dipasri Ghosh - Frontiers in Finance and Economics - May 2016 - Vol 13 N°1, 1-9

South African Stock Returns Predictability using Domestic and Global Economic Policy Uncertainty: Evidence from a Nonparametric Causality-in-Quantiles Approach

Mehmet Balcilar, Rangan Gupta, Clement Kyei – Frontiers in Finance and Economics – May 2016 – Vol 13 N°1, 10-37

Fiscal Performance, Liberalization and External Debt in Ghana

William Gabriel Brafu-Insaidoo - Frontiers in Finance and Economics - May 2016 - Vol 13 N°1, 38-76

Firm Organizational Environment and The Effect of Options Based Compensation Incentives on Accrual Earnings Management

Yacine Belghitar, Ephraim Clark - Frontiers in Finance and Economics - December 2015 - Vol 12 N°2, -1-29

Mean-Variance and Stochastic Dominance Analysis of Global Exchange-Traded Funds

Zhen-Zhen Zhu, Wing-Keung Wong, Kok Fai Phoon - Frontiers in Finance and Economics - December 2015 - Vol 12 N°2, - 30-55

Real Estate Market and Uncertainty Shocks : A Novel Variance Causality Approach

Ahdi Noomen, AjmiVassilios Babalos, Fotini Economou, Rangan Gupta – Frontiers in Finance and Economics – December 2015 – Vol 12 N°2, 56-85

Gearing of Chinese Listed Companies

Dimitrios I. Vortelinos, Geeta Lakshmi, Lin Ya - Frontiers in Finance and Economics - December 2015 - Vol 12 N°2, 86-126

How Does a Firm's Capital Structure Affect Stock Performance ?

Roberta Adami, Orla Gough, Gülnur Muradoğlu, Sheeja Sivaprasad- Frontiers in Finance and Economics - June 2015 - Vol 12 Nº1, 1-31

Use of Evolutionary Algorithm in the Investment Project Evaluation

Hasan Durucasu, Elif Acar- Frontiers in Finance and Economics - June 2015 - Vol 12 N°1, 32-50

Average Tax Rates and Economic Growth : A NonLinear Causality Investigation for the USA

Stella Karagianni, Maria Pempetzoglou, Anastasios Saraidaris - Frontiers in Finance and Economics - June 2015 - Vol 12 N°1, 51-59

A Quasi-IRR for a Project without IRR

F. Pressacco, C.A. Magni, P. Stucchi – Frontiers in Finance and Economics – December 2014 – Vol 11 N°2, 1-23

Irrationality of Macroeconomic Forecasts and Behavioral Characteristics of Forecasters

Paulina Ziembińska - Frontiers in Finance and Economics - December 2014 - Vol 11 N°2, 24-40

The Study of the Spillover and Leverage Effects of Financial Exchange Traded Funds (ETFs)

Jo-Hui, Chen, Maya Malinda - Frontiers in Finance and Economics - December 2014 - Vol 11 N°2, 41-59

GAAP Influence on Bid-Ask Spreads and Share Turnovers

Deborah A. Corbin - Frontiers in Finance and Economics - December 2014 - Vol 11 N°2, 60-77

Sources of Momentum Returns: A Decomposition of the Explained and the Unexplained Risk Factors

Sirajum M. Sarwar - Frontiers in Finance and Economics - December 2014 - Vol 11 N°2, 78-118

Quasi Maximum Likelihood Inference for Stochastic Volatility Models

Maddalena Cavicchioli - Frontiers in Finance and Economics - April 2014 - Vol 11 Nº1, 1-24

A Mathematical Resurgence of Risk Management: an Extreme Modeling of Expert Opinions

Dominique Guégan, Bertrand K. Hassani - Frontiers in Finance and Economics - April 2014 -

Stock Market Reaction to Debt-Based Securities : Empirical Evidence

Mohammad Elian, Tai Young-Taft - Frontiers in Finance and Economics - April 2014 - Vol 11 N°1, 46 - 72

Causality between Economic Policy Uncertainty across Countries :Evidence from Linear and Nonlinear Tests

Ahdi N. Ajmi, Rangan Gupta, Patrick T. Kanda – Frontiers in Finance and Economics – April 2014 – Vol 11 N°1, 73 – 102

Increase in Cash Holdings: Pervasive or Sector-Specific?

Laurence Booth, Jun Zhou - Frontiers in Finance and Economics - October 2013 - Vol 10 N°2, 1-30

Corporate Debt and Equity: Another Look at their Determinants

Ralph Palliam, Wafaa Sbeiti, Dilip K. Ghosh - Frontiers in Finance and Economics - October 2013 - Vol 10 N°2, 31 - 62

Pricing Contingent Claims with an Underlying Asset Driven by an Extreme Value Distribution:

Options on Dow Jones Industrial Average Index, 2009-2010

Francisco Venegas-Martínez, Salvador Cruz-Aké, Francisco López-Herrera – Frontiers in Finance and Economics – October 2013 – Vol 10, N°2, 63 – 84

Monetary Asset Substitution in the Euro Area

Paolo Zagaglia – Frontiers in Finance and Economics – October 2013 – Vol 10, N°2, 85 – 102

The Impact of the Subprime Crisis on Canadian Banks' Stock Returns

Jean-Pierre Gueyie - Frontiers in Finance and Economics - October 2013 - Vol 10, N°2, 103 - 128

High Technology ETF Forecasting: Application of Grey Relational Analysis and Artificial Neural Networks

Jo-Hui Chen, John Francis Diaz, Yu-Fang Huang - Frontiers in Finance and Economics - October 2013 - Vol 10 Nº2, 129 - 155

Revisiting Idiosyncratic Volatility and Stock Returns

Fatma Sonmez – Frontiers in Finance and Economics – April 2013 – Vol 10 N°1, 1-29

What's Wrong with Those Duration Measures? Nothing

Robin Grieves, J. Clay Singleton - Frontiers in Finance and Economics - April 2013 - Vol 10 N°1, 30-48

Structural Breaks and Predictive Regressions Models of South African Equity Premium

Goodness C. Aye, Rangan Gupta, Mampho P. Modise - Frontiers in Finance and Economics - April 2013 - Vol 10 Nº1, 49 - 86

A Three-Stage Labour-Managed Cournot Duopoly with Lifetime Employment as a Strategic Commitment

Kazuhiro Ohnishi - Frontiers in Finance and Economics - April 2013 - Vol 10 Nº1, 87 - 99

Exploiting Intraday and Overnight Price Variation for Daily VaR Prediction

Ana-Maria Fuertes, Jose Olmo - Frontiers in Finance and Economics - October 2012 - Vol 9 N°2, 1-31

A Case for Europe: the Relationship between Sovereign CDS and Stock Indexes

María Coronado, Teresa Corzo, Laura Lazcano - Frontiers in Finance and Economics - October 2012 - Vol 9 N°2, 32-63

Optimal Hedge Ratio Estimation during the Credit Crisis: An Application of Higher Moments

Nicholas Apergis, Alexandros Gabrielsen - Frontiers in Finance and Economics - October 2012 - Vol 9 N°2, 64-84

The Effect of Derivative Instrument Use on Capital Market Risk: Evidence from Banks in Emerging and Recently Developed Countries

Mohamed Rochdi Keffala, Christian de Peretti, Chia-Ying Chan - Frontiers in Finance and Economics - October 2012 - Vol 9 N°2, 85 - 121

Can Credit Risk Be Rated Through-the-Cycle?

Karlo Kauko – Frontiers in Finance and Economics – April 2012 – Vol 9 Nº1 – 32

A Probit Model for Insolvency Risk among Insurance Companies

Leo de Haan, Jan Kakes - Frontiers in Finance and Economics - April 2012 - Vol 9 N°1, 33-50

Derivatives Use and Analysts' Earnings Forecast Accuracy

Salma Mefteh-Wali, Sabri Boubaker, Florence Labégorre – Frontiers in Finance and Economics – April 2012 – Vol 9 N°1, 51 – 86

In Search of the "Lost Capital". A Theory for Valuation, Investment Decisions, Performance Measurement

Carlo Alberto Magni - Frontiers in Finance and Economics - April 2012 - Vol 9 N°1, 87-147

When is Inter-trade Time Informative? A Structural Approach

Tao Chen - Frontiers in Finance and Economics - April 2012 - Vol 9 N°1, 148 - 177

Fund Performance Robustness – An Evaluation Using European Large-Cap Equity Funds

Kenneth Högholm, Johan Knif, Seppo Pynnönen – Frontiers in Finance and Economics – October 2011 – Vol 8 N°2, 1 – 26

Giffen Goods in a Transition Economy: Subsistence Consumption in Russia

Yochanan Shachmurove, Janusz Szyrmer – Frontiers in Finance and Economics – October 2011 – Vol 8 N°2, 27 – 48

Risk in Emerging Stock Markets from Brazil and Mexico: Extreme Value Theory and Alternative Value at Risk Models

Raúl de Jesús, Edgar Ortiz - Frontiers in Finance and Economics - October 2011 - Vol 8 N°2, 49 - 88

Dynamic Copulas and Long Range Dependence

Beatriz Vaz de Melo Mendes, Silvia Regina Costa Lopes - Frontiers in Finance and Economics - October 2011 - Vol 8 N°2, 89 - 111

• M1, M2, and the U.S. Equity Exchanges

Ali M. Parhizgari, Duong Nguyen - Frontiers in Finance and Economics - October 2011 - Vol 8 N°2, 112 - 135

Real Interest Rate and Growth Rate: Theory and Empirical Evidence

Jean-Marie Le Page - Frontiers in Finance and Economics - October 2011 - Vol 8 N°2, 136 - 152

The Association Between Firm Characteristics and the Use of a Comprehensive Corporate Hedging Strategy: An Ordered Probit Analysis

Hue Hwa Au Yong, Robert Faff, Hoa Nguyen - Frontiers in Finance and Economics - April 2011 - Vol 8 Nº1, 1-16

Hedging with Derivatives and Value Creation : an Empirical Examination in the Insurance Industry

Luis Otero González, Sara Fernández López, Onofre Martorell Cunill – Frontiers in Finance and Economics – April 2011 – Vol 8 N°1, 17 – 42

The Skew Pattern of Implied Volatility in the DAX Index Options Market

Silvia Muzzioli - Frontiers in Finance and Economics - April 2011 - Vol 8 N°1, 43 - 68

Quantitative vs. Qualitative Criteria for Credit Risk Assessment

João O. Soares, Joaquim P. Pina, Manuel S. Ribeiro, Margarida Catalão-Lopes – Frontiers in Finance and Economics – April 2011 – Vol 8 N°1, 69 – 87

Models For Moody's Bank Ratings

Anatoly Peresetsky, Alexander Karminsky - Frontiers in Finance and Economics - April 2011 - Vol 8 N°1, 88 - 110

Should Minimum Portfolio Sizes Be Prescribed for Achieving Sufficiently Well-Diversified Equity Portfolios?

Lawrence Kryzanowski, Shishir Singh - Frontiers in Finance and Economics - October 2010 - Vol 7 N°2, 1 - 37

Are All Individual Investors Equally Prone to the Disposition Effect All the Time? New Evidence from a Small Market

Cristiana Cerqueira Leal, Manuel J. Rocha Armada, João L. C. Duque - Frontiers in Finance and Economics - October 2010 - Vol 7 N°2, 38 - 68

Would You Follow MM or a Profitable Trading Strategy?

Brian Baturevich, Gulnur Muradoglu – Frontiers in Finance and Economics – October 2010 – Vol 7 N°2, 69 – 89

Size, Book-to-Market, Volatility and Stock Returns: Evidence from Amman Stock Exchange (ASE)

Walid Saleh - Frontiers in Finance and Economics - October 2010 - Vol 7 N°2, 90 - 124

An Examination of Life Insurers' Risk Attitudes

Yaffa Machnes – Frontiers in Finance and Economics – October 2010 – Vol 7 N°2, 125 – 137

Can Market Actors Help Monitor European Banks?

Anissa Naouar – Frontiers in Finance and Economics – October 2010 – Vol 7 N°2, 138 – 182

The Two-Parameter Long-Horizon Value-at-Risk

Guy Kaplanski, Haim Levy – Frontiers in Finance and Economics – April 2010 – Vol 7 N°1, 1 – 20

Mitigation of Foreign Direct Investment Risk and Hedging

Jack E. Wahl, Udo Broll - Frontiers in Finance and Economics - April 2010 - Vol 7 N°1, 21 - 33

Evaluation and Comparison of Market and Rating Based Country Default Risk Assessment

Alexander Karmann, Dominik Maltritz - Frontiers in Finance and Economics - April 2010 - Vol 7 N°1, 34 - 59

To Outsource or Not To Outsource in North-South Trade

E. Kwan Choi, Jai-Young Choi - Frontiers in Finance and Economics - April 2010 - Vol 7 N°1, 60 - 81

Financial Deregulation, Private Foreign Borrowing and the Risk of Sovereign Default: A Political-Economic Analysis

Oya Celasun, Philipp Harms - Frontiers in Finance and Economics - April 2010 - Vol 7 N°1, 82 - 100

Further Evidence on the Impact of Economic News on Interest Rates

Dominique Guégan, Florian lelpo - Frontiers in Finance and Economics - October 2009 - Vol 6 N°2, 1 - 45

Private Equity Firms' Behaviours in Western Europe: Does Country Matter?

Abdesselam Rafik, Bastié Françoise, Cieply Sylvie- Frontiers in Finance and Economics – October 2009 – Vol 6 N°2, 46 – 66

Money Supply in a Simple Economic Growth Model and Multiple Steady States Equilibria

Laurent Augier, Jalloul Sghari- Frontiers in Finance and Economics - October 2009 - Vol 6 N°2, 67 - 95

Consumer Welfare in the Deregulated Swedish Electricity Market

Jens Lundgren- Frontiers in Finance and Economics - October 2009 - Vol 6 N°2, 101 - 119

Electricity Traffic over the Barriers of Networks: The Case of Germany and The Netherlands

Hans Andeweg, André Dorsman, Kees van Montfort - Frontiers in Finance and Economics - October 2009 - Vol 6 N°2, 120 - 139

Restructuring the European Energy Market through M&As – An Application of the Model of Economic Dominance

Wassim Benhassine - Frontiers in Finance and Economics - October 2009 - Vol 6 N°2, 140 - 180

Computational Efficiency and Accuracy in the Valuation of Basket Options

Pengguo Wang – Frontiers in Finance and Economics – April 2009 – Vol 6 N°1, 1 – 25

Forecasting VaR and Expected Shortfall using Dynamical Systems : A Risk management Strategy

Dominique Guégan, Cyril Caillault - Frontiers in Finance and Economics - April 2009 - Vol 6 N°1, 26 - 50

A Note on Stakeholder Theory and Risk : Implications for Corporate Cash Holdings and Dividend Policy

Gerhard Speckbacher, Paul Wentges - Frontiers in Finance and Economics - April 2009 - Vol 6 N°1, 51 - 72

The Mid 1990s Peso Crisis in Mexico: An Application of the Girton-Roper Model

Edward Ghartey - Frontiers in Finance and Economics - April 2009 - Vol 6 N°1, 73 - 92

Cash Management Routines : Evidence from Spain

Txomin Iturralde, Amaia Maseda, Leire San José - Frontiers in Finance and Economics - April 2009 - Vol 6 N°1, 93 - 117

Opportunity Cost, Excess Profit, and Counterfactual Conditionals

Carlo Alberto Magni - Frontiers in Finance and Economics - April 2009 - Vol 6 N°1, 118 - 154

• Why Do Monetary Policymakers Lean with the Wind During Asset Price Booms ?

Wolfram Berger, Friedrich Kissmer - Frontiers in Finance and Economics - April 2009 - Vol 6 N°1, 155 - 174

First Passage and Excursion Time Models for Valuing Defaultable Bonds: a Review with Some Insights

Martina Nardon - Frontiers in Finance and Economics - October 2008 - Vol 5 N°2, 1 - 25

Using Weekly Empirical Probabilities in Currency Analysis and Forecasting

Andrew C Pollock, Alex Macaulay, Mary E Thomson, Dilek Önkal - Frontiers in Finance and Economics - October 2008 - Vol 5 N°2, 26 - 55

Financing and Valuation of a Marginal Project by a Firm Facing Various Tax Rates

Axel Pierru - Frontiers in Finance and Economics - October 2008 - Vol 5 N°2, 56 - 71

Dynamic Copula Modelling for Value at Risk

Dean Fantazzini - Frontiers in Finance and Economics - October 2008 - Vol 5 N°2, 72 - 108

Fundamental Capital Valuation for IT Companies : A Real Options Approach

Arun J Prakash, Chung Baek, Bruce Dupoyet - Frontiers in Finance and Economics - April 2008 - Vol 5 N°1, 1 - 26

Statistical Inference of Risk-Adjusted Performance Measures

Miranda Lam - Frontiers in Finance and Economics - April 2008 - Vol 5 Nº1, 27 - 45

Intra-Day Stock Returns and Close-End Price Manipulation in the Istanbul Stock Exchange

Guray Kuçukkocaoglu - Frontiers in Finance and Economics - April 2008 - Vol 5 N°1, 46 - 84

Relationship between Implied and Realized Volatility of Sand P CNX Nifty Index in India

Siba Prasda Panda, Nirianjan Swain, D.K. Malhotra - Frontiers in Finance and Economics - April 2008 - Vol 5 N°1, 85 - 105

The Determinants of Commercial Bank Interest Margin and Profitability: Evidence from Tunisia

Samy Bennaceur, Mohamed Goaied - Frontiers in Finance and Economics - April 2008 - Vol 5 N°1, 106 - 130

Introduction to the European Internal Market – An Abstract of the Present Development of the European Internal Market

Dr. Wolfgang Berger, DDr. Marian Wakounig, Mag. Caroline Kindl - Frontiers in Finance and Economics - December 2007 - Vol 4 N°2, 1 - 33

The Impact of Value Added Tax on Financial Services and Insurances – the Law of Unintended Consequences?

Arthur Kerrigan - Frontiers in Finance and Economics - December 2007 - Vol 4 N°2, 34 - 46

Economic Growth and Indirect Financial Taxes, Empirical Evidence from Greece, Spain and Portugal

Radu Tunaru Athena K. Kaliva – Frontiers in Finance and Economics – December 2007 – Vol 4 N°2, 47 – 74

The Causal Relationship Between Indirect Taxes and Expenditures: a Comparative Investigation of Greece, Spain and Portugal

Radu Tunaru Athena K. Kaliva – Frontiers in Finance and Economics – December 2007 – Vol 4 N°2, 75 – 91

Corporate Taxation and Futures-Hedging

Jack E. Wahl Udo Broll - Frontiers in Finance and Economics - December 2007 - Vol 4 N°2, 92 - 101

Comparing Effective Corporate Tax Rates

Gaëtan Nicodème – Frontiers in Finance and Economics – December 2007 – Vol 4 N°2, 102 – 131

The Impact of EU Law on National Dividend Tax Systems

Evgenia Chatziioakeimidou - Frontiers in Finance and Economics - December 2007 - Vol 4 N°2, 132 - 152

Marginal Conditional Stochastic Dominance Between Value and Growth

Victor Chow, Bih-Shuang Huang, Ou Hu K. - Frontiers in Finance and Economics - June 2007 - Vol 4 N°1, 1 - 34

Call an Put Implied Volatilities and the Derivation of Option Implied Trees

V. Moriggia, S. Muzzioli, C. Torricelli - Frontiers in Finance and Economics - June 2007 - Vol 4 N°1, 35-64

Multicriteria Framework for the Prediction of Corporate Failure in the UK

Fotios Pasiouras - Frontiers in Finance and Economics - June 2007 - Vol 4 N°1, 65 - 90

The Information Content of Cross-sectional Volatility for Future Market Volatility: Evidence from Australian Equity Returns

Md. Arifur Rahman - Frontiers in Finance and Economics - June 2007 - Vol 4 N°1, 91 - 124

The Effect of Price Limits on Unconditional Volatility: The Case of CASE

Eskandar A. Tooma Medhat Hassanein - Frontiers in Finance and Economics - June 2007 - Vol 4 N°1, 125 - 143

Stock Market Reaction to Unexpected Changes in Interest Rates

Shmuel Hauser Gitit G. Gershgoren – Frontiers in Finance and Economics – December 2006 – Vol 3 N°2, 1 – 17

The Long-Run Performance of UK Rights Issuers

Abdullah Iqbal, Susanne Espenlaub, Norman Strong Gershgoren – Frontiers in Finance and Economics – December 2006 – Vol 3 N°2, 18 – 54

Has the Stock Market Integration Between the Asian and OECD Countries Improved After the Asian Crisis?

Girijasankar Mallik Gershgoren - Frontiers in Finance and Economics - December 2006 - Vol 3 N°2, 55 - 69

Are Stock Markets Integrated? Evidence from a Partially Segmented ICAPM with Asymmetric Effects

Mohamed Arouri Gershgoren - Frontiers in Finance and Economics - December 2006 - Vol 3 N°2, 70 - 94

Portfolio Theory and Portfolio Management: a Synthetic View

Dilip K. Ghosh Dipasri Ghosh Gershgoren - Frontiers in Finance and Economics - December 2006 - Vol 3 N°2, 95 - 112

Hedging of Exchange Rate Risk: a Note

Stefan Schubert Gershgoren - Frontiers in Finance and Economics - December 2006 - Vol 3 N°2, 113 - 121

Option Pricing with Long-Short Spreads

Pengguo Wang - Frontiers in Finance and Economics - June 2006 - Vol 3 Nº1, 1 - 28

Exchange Rate Determination from Monetary Fundamentals: an Aggregation Theoretic Approach

William Barnett - Frontiers in Finance and Economics - June 2006 - Vol 3 N°1, 29 - 48

International Portfolio Formation, Skewness & the Role of Gold

Brian M Lucey, Valerio Poti, Edel Tully - Frontiers in Finance and Economics - June 2006 - Vol 3 N°1, 49 - 68

Interdependence of ASEAN Business Cycles

Hway-Boon Ong, Chin-Hong Puah, Muzafar Shah Habibullah – Frontiers in Finance and Economics – June 2006 – Vol 3 N°1, 69 – 78

Crisis Anticipation at a Micro-Level: Mexico 1995-1996

Karen Watkins - Frontiers in Finance and Economics - June 2006 - Vol 3 Nº1, 79 - 102

Zelig and the Art of Measuring Excess Profit

Carlo Alberto Magni - Frontiers in Finance and Economics - June 2006 - Vol 3 N°1, 103 - 129

Frontiers of Financially Constrained and Unconstrained Firms: a New Development in Finance

Julio Pindado - Frontiers in Finance and Economics - December 2005 - Vol 2 N°2, 1 - 32

Attitudes with Regard to Risk: Risk Aversion, Prudence and Temperance

Octave Jokung N. - Frontiers in Finance and Economics - December 2005 - Vol 2 N°2,

Additional Panel Data Evidence on the Savings-Investment Relationship and Foreign Aid in LDCs

James E. Payne Risa Kumazawa - Frontiers in Finance and Economics - December 2005 - Vol 2 N°2, 59 - 66

The Kraus and Litzenberger Quadratic Characteristic Line and Event Studies

Arun Prakash – Frontiers in Finance and Economics – December 2005 – Vol 2 N°2, 67 – 78

The Product Life Cycle and the Real Option of Waiting

Oscar Gutiérrez – Frontiers in Finance and Economics – December 2005 – Vol 2 N°2, 79 – 105

Military Spending and Economic Growth in Greece, Portugal and Spain

Eftychia Nikolaidou - Frontiers in Finance and Economics - June 2005 - Vol 2 Nº1, 1 - 17

Manufacturing Labour Demand, Technological Progress and Military Expenditure

John Dunne - Frontiers in Finance and Economics - June 2005 - Vol 2 Nº1, 18 - 30

The Evolution of European and US Aerospace and Defence Markets

Vasilis Zervos - Frontiers in Finance and Economics - June 2005 - Vol 2 Nº1, 31 - 52

Revolution in the Defence Electronics Markets? An Economic Analysis of Sectoral Change

Paul Dowdall – Frontiers in Finance and Economics – June 2005 – Vol 2 N°1, 53 – 67

What Lies Beneath? Who Owns British Defence Contractors and Does It Matter?

Jonathan Bradley Derek Braddon - Frontiers in Finance and Economics - June 2005 - Vol 2 N°1, 68 - 81

Canadian Mutual Fund Flows and Capital Market Movements

Jean-Pierre Gueyié Roger B. Atindéhou - Frontiers in Finance and Economics - December 2004 - Vol 2 N°1, 70 - 84

Parametric and Non-Parametric Analysis of Performance Persistence in Spanish Investment Funds

Luis Ferruz, José L. Sarto, Maria Vargas - Frontiers in Finance and Economics - December 2004 - Vol 2 N°1, 85 - 100

An Empirical Analysis of Kenyan Daily Returns Using EGARCH Models pp. 101-115

Georges Ogum, Francisca M. Beer, Geneviève Nouyrigat - Frontiers in Finance and Economics - December 2004 - Vol 2 N°1, 101 - 115

Real Options, Uncertainty and Firm Value pp. 116-140

Manuel Espitia Escuer Gema Pastor Agustin - Frontiers in Finance and Economics - December 2004 - Vol 2 Nº1, 116 - 140

Parametric and Non-Parametric Measures of Volatility: Risk Estimation via the Gini Decompostion and Comparison with the Value-at-Risk

Stéphane Mussard – Frontiers in Finance and Economics – December 2004 – Vol 2 N°1, 141 – 156

Corporate Governance, Market Valuation and Dividend Policy in Brazil

Ricardo Leal André Carvalhal-da-Silva - Frontiers in Finance and Economics - June 2004 - Vol 2 N°1, 1 - 16

The Effects of Decision Flexibility in the Hierarchical Investment Decision Process

Winfried Hallerbach, Haikun Ning, Jaap Spronk - Frontiers in Finance and Economics - June 2004 - Vol 2 N°1, 17 - 36

Random Walk as a Universal Test of Weak-Form Foreign Exchange Market Efficiency: A Proof

Edward Ghartey – Frontiers in Finance and Economics – June 2004 – Vol 2 N°1, 37 – 45

Credit Exposure & Sovereign Risk Analysis: The Case of South America

Sotiris K. Staikouras Elena Kalotychou - Frontiers in Finance and Economics - June 2004 - Vol 2 N°1, 46 - 56

Strategic Conduct and Access Discrimination, in the Semi-Liberalized Electricity Sector in Mexico

Alejandro Ibarra-Yunez - Frontiers in Finance and Economics - June 2004 - Vol 2 Nº1, 57 - 69

Advertisements

REPORT THIS A

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: <u>Cookie Policy</u>

Close and accept

The Study of the Spillover and Leverage Effects of Financial Exchange Traded Funds (ETFs)

Jo-Hui, Chen¹

Maya Malinda²

Abstract

This study adopts the Generalized Autoregressive Conditional Heteroskedasticity-in-Mean Autoregressive Moving Average (GARCH-M-ARMA) and Exponentially Generalized Autoregressive Conditional Heteroskedasticity-in-Mean Autoregressive Moving Average (EGARCH-M-ARMA) models to analyze the spillover, asymmetric volatility, and leverage effects of financial exchange-traded funds (ETFs). The results show that bilateral relationships exist between financial and non-financial ETFs. Both ETFs have negative asymmetric volatility, suggesting that the value of stock indices and ETFs reveal conditional heterokesdasticity. Financial and non-financial ETFs also have negative leverage effects on benchmark indexes. Bilateral relations in terms of the spillover effects of volatilities and leverage effects exist between financial and non-financial ETFs

Keywords: Spillover Effect, Asymmetric-Volatility, Leverage Effect, Financial ETFs

JEL Classification: Financial Economics (G1)

¹ Dr. Jo-Hui Chen, Department of Finance, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li City, Taiwan 32023, R.O.C. <u>TEL:+886-3-265-5018</u> FAX: +886-3-265-5749 Email: johui@cycu.edu.tw;

 ² Maya Malinda, student at PhD Program in Business, Chung Yuan Christian University, 200
 Chung Pei Rd., Chung Li City, Taiwan 32023, R.O.C. TEL:+886-3-265-9999 FAX:
 +886-3-265-8888; lecturer at Maranatha Christian University, Bandung, Indonesia.
 Email: <u>hmy.malinda@yahoo.com</u>

1 - Introduction

Exchange-traded fund (ETF) was launched for the first time by State Street Global Advisors in 1993, and the ETF market place has grown significantly since then. The global ETF market had grown to \$2.25 trillion assets in 2013 with more than four thousand funds. China's economy, the fourth biggest in the world, has achieved rapid and steady growth over the past 20 years. However, accessing China's capital market remains difficult for global investors. Under these circumstances, ETFs are becoming good investment channels, and for international investors, China ETFs have become a favorite choice for investment [Song (2006)].

Even though many investors are profiting from ETFs, critical issues about risks have caused markets to function in a different way. In particular, some critics have connected with ETFs the large fluctuations in volatility and enhanced correlations in the equity market. Volatility and correlations have indeed increased over the past few years; however, these conditions are consistent with the terms of the macroeconomic uncertainty. Nevertheless, a good advantage of ETFs is that they allow better direction-finding of market environments that display correlations and higher volatility [Mazza (2012)].

Financial giants have been crippled by weries of foreclosures and crises. Investors must be competent to recognize potential opportunities and risks. Financial ETFs can help investors to hedge risks, cut losses, or look for better investment opportunities. Financial ETFs can also provide investors some associated advantages, like tax benefits, and allow them to experience more beneficial trading with minimal transactions and lower brokerage costs.

Many empirical studies have proven that ETF indices create spillover and leverage effects. For example, Chen and Huang (2010) revealed that has strong spillover effects from returns for Hong Kong and Singapore. Also, Chen (2011) found significant results on the leverage effects and bilateral spillover effects of index return volatilities for ethical and non-ethical ETFs. Moreover, Chen and Diaz (2012) found a strong negative/positive influence of leverage and inverse leverage ETFs return on stock index returns. To summarize the relevant previous studies, they found significant results on the leverage effects and bilateral spillover effects of ETFs on index return volatilities.

Applying similar methods, some previous studies found spillover and the asymmetric-volatility effects in ETFs using EGARCH-M-ARMA. To illustrate, Chen and Diaz (2012) found that there is a strong positive (negative) influence of lagged leveraged (inversed leverage) ETFs return on current stock index returns. In a relatively new study, Krause and Tse (2013) verified

this results and indicate that return spillovers and asymmetric volatility create a bi-directional volatility response effect of ETFs in the case of the United States and Canada.

Up to this point, however, there were very few studies on financial ETFs for the equities market. ETFs are expanding rapidly, and so are the types of ETFs. There are many types of ETFs, namely, bond, commodity, and equity ETFs, and each type of ETF is further divided into several sub-types. For example, an equity ETF includes industrial, material, and financial ETFs; while financial ETFs has 48 types, which includes bank, insurance, and capital market. We opted to focus on financial ETFs in this study because of the lack of research in this field.

The motivation of this study is to reveal the existence of unilateral and bilateral-return effects of financial ETFs and their benchmark indexes. These findings will help investors to see investment opportunities from financial ETFs of benchmark indices or stock index to predict movements of financial ETFs and vice versa.

This paper analyzes the existing bilateral effects and asymmetric volatility effect of return and volatility between stock indexes and ETF returns for financial and non-financial ETFs utilizing the Generalized Autoregressive Conditional Heteroskedasticity-in-Mean Autoregressive Moving Average (GARCH-M-ARMA) and Exponentially Generalized Autoregressive Conditional Heteroskedasticity-in-Mean Autoregressive Moving Average (EGARCH-M-ARMA) models. This paper contributes to the literature on financial and non-financial ETFs using returns and volatilities of underlying stock indexes and to strengthen investing strategies for better portfolio decisions.

This article is organized in sections. Section II presents the literature review. Section III describes the data and explains the GARCH-M-ARMA and EGARCH-M-ARMA models. Section IV presents the empirical results of the ETF spillovers and leverage effects of financial and non-financial ETFs, and Section V provides the conclusion.

2 - Literature review

The global investment market has witnessed a sudden increase in the number and capitalization of ETFs. Gao (2001) earlier explained that the reason for this expansion are diversification, convenience, simplicity, cost-effectiveness, transparency, flexibility, tax-efficiency, and variety. ETFs have certainly caught investors' attention on the many available investment

opportunities that surfaced from their home markets. Schoenfeld (2001) mentioned that ETFs, which can be one or a combination of investment instruments, stands out as a diversification option because they provide varied and flexible options for investors to invest in the global equity markets. In achieving greater coverage in a variety of asset classes, ETFs also offers insights into the recent use of liquid index trackers [Noël (2009)]. Deborah (2009) also examined rankings of ETF providers, index presentation, industry development, and applications.

The EGARCH approach and the ARMA model for ETF and stock index returns were also adopted to analyze asymmetric volatility or leverage effects that released non-negativity constraints in the linear GARCH approach [Koutmos and Booth (1995); Nelson, (1991)]. In the application of GARCH-ARMA and EGARCH-ARMA models to evaluate spillover effects of ETFs, Chen and Huang (2010) analyzed the effect of the spillover and the leverage effects on returns and volatilities of stock indexes and ETFs for emerging markets and developed countries. The result shows that the spillover effects of returns are excellent for Hong Kong, followed by Singapore. The study found that spillover effects on stock index and ETF volatilities have bilateral relationship. The study of Chen (2011) applied leverage effects on ethical ETFs based on GARCH-ARMA and EGARCH-ARMA models. The research analyzed ethical and non-ethical ETFs against benchmark indexes; the results found that there are no differences in the spillover of returns from volatilities and leverage effects.

Chen and Diaz (2012) established the strong positive (negative) influence of lagged leverage (inverse leveraged) ETF returns on current stock index returns. Lagged stock index returns have a negative (positive) effect on leveraged (inverse leveraged) ETF returns as a result of the addition (reduction) of total return swap exposure. Spillover effects of returns also showed a negative bilateral relationship. A bilateral relationship in the spillover effects of volatilities was also observed from the results. The findings provided evidence on the higher volatility caused by leveraged ETFs. The correlation between risks and returns is negative for both inverse leveraged ETF returns and stock indexes, and the positive correlation for leveraged ETFs was minor but still significant.

Krause and Tse (2013) used the EGARCH model, and found that price discovery flows consistently from the United States to Canada and also discovered volatility spillovers and bi-directional feedback effects. On the other hand, Chen, et. al (2014) used ARMA and Seasonal Autoregressive Moving Average (SARMA) revealed that Real Estate Investment Trust-Exchange-Traded Funds have bilateral-return influences with their tracked indices, demonstrated a robust positive connection.

3 - Data and methodology

This study uses daily closing prices of financial and non-financial ETFs, and their corresponding stock indexes from the Yahoo! Finance website. The study period involves various ETF inception dates until the 12th of May 2012. Only financial ETFs from the Broad Financial List, especially those in the insurance and financial services, were selected. The other selected five international financial ETFs are from Brazil, China, Canada, Europe, Emerging market and financial ETFs, and two U.S. financial ETFs. Non-financial ETFs came from the industrial sector, consumer, industrial, and material ETFs such as Brazil Consumer ETFs, China Industrial ETFs, and Capped Material Index from Canada, Emerging Market Metal Mining, Europe ETFs, Down Jones U.S. Industrial, and Select Sector SPDR USA were also selected for comparison. The New York Stock Exchange (NYSE) Composite Index, S&PTSX Composite Index Toronto, and NASDAQ Composite were included as benchmark stock indexes.

The spillover and leverage effects of ETFs and stock index returns and their volatilities were estimated. Returns were measured as the logarithm of returns. The difference between the logarithm of price at time t-1 for ETFs and the difference between the logarithm of index (I) at time t and time t-1 for stock index were calculated with the equations below.

$$R_{i,t}^{m} = \ln\left(\frac{I_{t}}{I_{t-1}}\right) * 100, \tag{1}$$

$$R_{i,t}^{e} = \ln \left(\frac{P_{i,t}}{P_{i,t-1}}\right) * 100,$$
(2)

where $R_{i,t}^m$ and $R_{i,t}^e$ represent stock index returns and the *i*,*t* financial or non-financial ETFs returns at time *t*, respectively, *I* is stock index, and *P* is ETF price.

Previous research revealed using the GARCH model like that of Chan et al. (1991) using the bivariate GARCH model, proved that stock and futures market can be used to predict the future volatility in other markets. Liu and Pan (1997), on the other hand, found that volatility spillover and the leverage effect in the United States influenced the Asia financial market. In a more recent set of studies, Steeley (2006) found that bond market volatility

influenced both stock and bond markets in utilizing a GARCH model. Morales (2008) used GARCH and EGARCH models and indicated clear confirmation of volatility determination among valuable metals returns. There is also an evidence of bidirectional volatility spillovers in the majority of studied cases. Furthermore, asymmetric spillover effects discovered that pessimistic information has a stronger impact in these markets than optimistic news. Using a bivariate GARCH approach, Dean et al. (2010) found that there is asymmetry in return and volatility spillover among bond and stock markets in Australia.

The advantage of this study, using the GARCH-M-ARMA and EGARCH-M-ARMA models is that both models reveal a more accurate prediction of financial ETFs and vice versa. This study mainly focuses on financial ETFs because of the lack of research in this field, and to further strengthened the determination of spillover and leverage effects.

The GARCH-ARMA models were adopted to determine if GARCH effects exist between stock index returns and ETF returns and to verify if the data have conditional heteroskedasticity [Chen and Huang (2010)]. The EGARCH model proposed by Nelson (1991) and the ARMA specification for stock index and ETF returns were also adopted to analyze asymmetric volatility or leverage effects with non-negativity constraints in the linear GARCH model. The components of the combination of GARCH (p, q) -ARMA (g, s) and EGARCH (p, q) - ARMA (g, s) models were illustrated [Niarchos et al. (1999); Huang and Yang (2002); Xu and Fung (2005)].

The interdependence between stock index and ETF returns is affected by market shocks. The spillover and leverage effects are illustrated as follows:

$$R_{i,t}^{e} = \alpha_{0} + \sum_{i=1}^{s} \alpha_{i} R_{i,t-i}^{e} + w R_{i,t-1}^{m} + \varepsilon_{i,t}^{e} + \sum_{i=1}^{s} \theta_{i} \varepsilon_{i,t-i}^{e} + z \sqrt{h}_{i,t}^{e}, \qquad (3)$$

$$\log\left(h_{i,t}^{e^{2}}\right) = a_{0} + \sum_{i=1}^{q} \left(a_{i} \left|\frac{\varepsilon_{i,t-i}^{e}}{h_{i,t-i}^{e}}\right| + \delta_{i} \frac{\varepsilon_{i,t-i}^{e}}{h_{i,t-i}^{e}}\right) + \sum_{i=1}^{p} \psi_{i} \cdot \log\left(h_{i,t-i}^{e^{2}}\right) + v\varepsilon_{i,t-1}^{m^{2}},$$

for EGARCH-M (4)

$$\mathcal{E}_{i,t}^{e} \mid \Psi_{t-1} \sim N(0, h_{i,t}^{e}),$$

$$R_{i,t}^{m} = \beta_{0} + \sum_{i=1}^{g} \beta_{i} R_{i,t-i}^{m} + dR_{i,t-1}^{e} + \mathcal{E}_{i,t}^{m} + \sum_{i=1}^{s} \gamma_{i} \mathcal{E}_{i,t-i}^{m} + k \sqrt{h}_{i,t}^{m}, \qquad (5)$$

$$\log(h_{i,t}^{m^{2}}) = b_{0} + \sum_{i=1}^{q} \left(b_{i} \left| \frac{\varepsilon_{i,t-i}^{m}}{h_{i,t-i}^{m}} \right| + \delta_{i} \frac{\varepsilon_{i,t-i}^{m}}{h_{i,t-i}^{m}} \right) + \sum_{i=1}^{p} \zeta_{i} \cdot \log(h_{i,t-i}^{m^{2}}) + l\varepsilon_{i,t-1}^{e^{2}},$$

 $\mathcal{E}_{i,t}^m \mid \psi_{t-1} \sim N(0, h_{i,t}^m)$,

where $R_{i,t}^{e}$ and $R_{i,t}^{m}$ are financial (or non-financial) ETF returns and stock index return at timet; $h_{i,t}^{e^2}$ is conditional variance; $\sum_{i=1}^{g} \alpha_i R_{i,t-i}^{e}$ is the higher order of the autoregressive AR (g) for ETF returns; $\mathcal{E}_{i,t}^{e}$ represents residual ETF returns at period t; and $\sum_{i=1}^{s} \theta_i \mathcal{E}_{i,t-i}^e$ is the higher order of the autoregressive MA(s) for ETF returns at period t. $\sum_{i=1}^{p} \psi_{i} h_{i,t-i}^{e^{2}}$ is the p order conditional heteroskedasticity of GARCH term for ETF returns at period t; $\sum_{i=1}^{n} a_i \varepsilon_{i,t-i}^{e}$ is the q order of the ARCH term for ETF returns at time t; δ_i is leverage term; t-1 is information set at period t-1; and θ_i is for the unknown parameter. $\sum_{i=1}^{p} \psi_i \log(h_{i,i-i}^{e^2})$ is the notation for the ETF returns associated with p order of qualified heteroscedasticity of GARCH at time t; $\sum_{i=1}^{p} \zeta_i \cdot \log(h_{i,t-i}^{m^2})$ is notation for the stock index associated the returns with *p* order of qualified heteroscedasticity of GARCH at time *t*;

 $\sum_{i=1}^{q} \left(a_{i} \left| \frac{\varepsilon_{i,t-i}^{e}}{h_{i,t-i}^{e}} \right| + \delta_{i} \frac{\varepsilon_{i,t-i}^{e}}{h_{i,t-i}^{e}} \right)$ is the notation for the ETF returns associated with q

order of qualified heteroscedasticity of ARCH; $\sum_{i=1}^{q} \left(b_i \left| \frac{\varepsilon_{i,t-i}^m}{h_{i,t-i}^m} \right| + \delta_i \frac{\varepsilon_{i,t-i}^m}{h_{i,t-i}^m} \right)$ is the

notation for the stock index returns associated with q order of qualified heteroscedasticity of ARCH.

The null hypothesis, H₀, means no spillover effects of volatility (v=0; l=0), against the alternative hypothesis, H₁, related to having spillover effects of volatility, ($v\neq0$; $l\neq0$). If v is significantly higher than zero, then lagged residual stock index will affect ETF volatility. If l is significantly unequal to zero, then lagged residual ETF will influence stock index volatility. Possible

volatility spillover effects were considered to verify cross-market dynamics for stock indexes and ETFs returns.

The unilateral effect of lagged ETF returns on stock index returns and vice versa, or the bilateral return influence and asymmetric volatility effects between financial or non-financial ETFs and the stock indexes that are being tracked were identified. Risk and return relationships in standard deviation are denoted by z and k coefficients; and in that order, a positive relationship exists in accordance with other previous studies that utilized the GARCH-M model [Chou (1987); French, et al.(1987)]. Therefore, this study can determine whether a positive or negative connection exists between risks and returns of stock indexes and financial or non-financial ETFs. Given the significance of these results, this research provides a different direction from that of previous studies that only considered the spillover and leverage effects of non-financial ETFs.

This study tested the null hypothesis, H_0 , (which states that the sequence has no spillover effects of returns (w = 0; d = 0)) against the alternative hypothesis, H_1 , (which states that the sequence has the spillover effect of returns ($w \neq 0$; $d \neq 0$)). The coefficients w and d represent the spillover effect of ETFs and stock index returns, respectively. If w is significantly different from zero, the lagged stock index returns will affect ETF. If d is significantly unequal to zero, the lagged ETF returns will affect the stock index returns. The use of GARCH models that incorporate the possibility of spillover enabled us to determine whether ETF and stock index returns in different markets are interdependent or whether they respond to domestic market shocks.

4 - Results

Table 1 shows that the average returns for the majority of the samples are positive, except for three financial ETFs, namely, Global X Brazil Financial (BRAF), Global X China Financial ETF (CHIX), and MSCI Europe Financial Index (EUFN); and for one non-financial ETFs, the Global China Industrials ETF (CHII). Generally, we can say that financial and non-financial ETFs are an investment for diversification because average returns positive, and standard deviations for both are relatively small. However, the majority of the financial data under study, including some of stock returns have negatively skewed,

___|

ETFS	Market	Index	Code	Type	Period	Obs	Mean SD		Skew Kurt	J-B
	BD A 711	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2010/7/29-	274	0.001 0.013 -0.59	013 -0.5		7.24 301.58***
	TITUN	Global X Brazil Financials ETF (BRAF)-NYSEArca	BRAF	ETF	2012/5/12	110	0.000 0.022	0.06		6.94 242.09***
	CUNA	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2010/1/22-	173	0.000 0.013	113 -0.34		5.94 217.14***
	CULINA	Global X China Financials ETF (CHIX)-NYSEArca	CHIX	ETF	2012/5/12	1/0	0.000 0.020	020 0.20		6.76 340.06***
	CANADA	S&PTSX Composite index (Interi (^GSPTSE)Toronto	GSP	Stock	2001/3/30-	1590	0.000 0.012		1 11.90	-0.41 11.90 8750.97***
	NUMBER	iShares S&PTSX Capped Financials Index (XFN.TO)-Toronto	XFN	ETF	2012/5/12	1007	0.000 0.013		8 13.12	0.18 13.12 11244.1***
Financial	FLEDCING	NASDAQ Composite (^IXIC)-Nasdaq	NAS	Stock	2010/2/11-	101	0.001 0.014	14 -0.34		6.03 169.34***
ETFs	ENTERGING	iShares MSCI Emerg Mrkts Financials Idx (EMFN)-Nasdaq	EMEN	ETF	2012/5/12	174	0.000 0.022	022 -0.10		4.37 33.696***
	ETDODE	NASDAQ Composite (^IXIC)-Nasdaq	NAS	Stock	2010/2/3-	527	0.001 0.014	014 -0.30		5.67 164.844***
	FUNCTE	iShares MSCI Europe Financials Index (EUFN)-Nasdaq	EUFN	ETF	2012/5/12	170	0.000 0.025	0.09		5.39 126.608***
	TICA	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2006/5/5-	1107	0.000 0.017	17 -0.1	2 10.21	-0.12 10.21 3225.34***
	Wen	iShares Dow Jones US Insurance (IAK)-NYSEArca	IAK	ETF	2012/5/12	10+1	0.000 0.023		9 11.43	0.29 11.43 4420.76***
	110.1	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2010/6/21-	0200	0.000 0.0	014 -0.0	9 11.81	0.000 0.014 -0.09 11.81 9576.66***
	VCD	iShares Dow Jones US Financial Services (IYG)-NYSEArca	IYG	ETF	2012/5/12	5067	0.000 0.022		5 14.22	0.45 14.22 15643.4***
	112 V U.G.	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2010/8/7-	457	0.0000.0	113 -0.4	6 6.44	0.000 0.013 -0.46 6.44 241.168***
	DIAALI	Global X Brazil Consumer ETF (BRAQ)-NYSEArca	BRAQ	ETF	2012/5/12	104	0.000 0.0	118 -0.3	9 4.47	0.000 0.018 -0.39 4.47 53.1617***
	CUNTA	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2009/12/1-	203	0.0000.0	113 -0.3	7 6.10	0.000 0.013 -0.37 6.10 248.705***
	CHINA	Global X China Industrials ETF (CHII)-NYSEArca	CHII	ETF	2012/5/12	100	-0.001 0.021	0.16	6 5.28	5.28 130.062***
	CANADA	S&PTSX Composite index (Interi (^GSPTSE)Toronto	GSP	Stock	2005/12/28-	1551	0.000 0.014		9 10.53	-0.39 10.53 3714.20***
;	CANADA	iShares S&PTSX Capped Materials Index (XMA. TO)-Toronto	XMA	ETF	2012/5/12	+001	0.001 0.023		6 10.41	0.06 10.41 3557.67***
-uov	THE THE THE	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2009/6/2-	100	0.001 0.013	113 -0.37		5.53 209.923***
FTE	ENTERGING	EGShares Emerging Markets MetalsMining (EMT)-NYSEArca	ENIT	ETF	2012/5/12	471	0.000 0.022	122 -0.17		4.53 73.921***
LILS	ETDODE	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2005/3/10-	1702	0.000 0.0	115 -0.1	3 11.54	0.000 0.015 -0.13 11.54 5458.99***
	FUNCTE	Vanguard MSCI Europe ETF (VGK)-NYSEArca	VGK	ETF	2012/5/12	6611	0.000 0.019 -0.06	19 -0.0		9.33 2997.92***
	TCA	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	2000/7/14-	0000	0.000 0.0	014 -0.0	9 11.70	0.000 0.014 -0.09 11.70 9178.40***
	Ven	iShares Dow Jones US Industrial (IYJ)-NYSEArca	IVJ	ETF	2012/5/12	ENET	0.000 0.0	115 -0.1	6 7.25	0.000 0.015 -0.16 7.25 2203.37***
	TTCA	NYSE COMPOSITE INDEX (NEW METHO (^NYA)-NYSE	NYA	Stock	1998/12/22-	12273	0.000 0.0	113 -0.0	9 11.59	0.000 0.013 -0.09 11.59 10210.5***
	Wen	Industrial Select Sector SPDR (XLI)-NYSEArca	XLI	ETF	2012/5/12		0.000 0.0	15 -0.0	7 7.69	0.000 0.015 -0.07 7.69 3052.01***

Table 1. The Sample Size and Period of financial and non-financial ETFs and Stock Indexes

49

which means that perhaps the future data will be smaller than mean.

The result for financial ETFs and non-financial ETFs kurtosis are leptokurtic, which means that the stock will have a quite low quantity of variance, because returns are usually closer to the mean. Kurtosis also helps us to recognize the level of risk in the stock. Leptokurtic distribution is preferred by investors who wish to keep away from large and inconsistent swings in portfolio returns, which may negatively affect the volatility structures of their investments. All Jarque-Bera statistics are significant for all samples showing that the assumption of normal distribution of the residual cannot be accepted.

Table 2 indicates that the results of the Augmented Dickey Fuller test are all significant, showing that the observed time series for ETFs returns and stock indexes returns are stationary. This paper uses the minimum Akaike Information Criterion (AIC) for getting the best model for the ARMA, GARCH, and EGARCH models [Engle and Ng (1991)]. Test for serial correlation applies the Breusch-Godfrey LM test, and shows that the null hypothesis cannot be rejected for all of ETFs and stock Index returns, which means no serial correlation. The use of the ARCH-LM test illustrates that the null hypothesis of no ARCH effects for all samples can be rejected. The results of the ARCH-LM test again shows that the GARCH-ARMA and EGARCH-ARMA models have the capability to eliminate ARCH errors in the residuals. Leverage effect is verified through EGARCH-ARMA estimations by checking significant autocorrelation, and by examining the volatility of stock index and ETF returns that exhibit conditional heterokesdasticity [Chen and Diaz (2012)]. The results of EGARCH- ARMA models for the leverage effect (δ) indicate that all financial and non-financial ETFs and stock index returns are significant in Table 3, which is consistent with the results obtained by [Chen (2004), Balaban (2005), Li (2007), and Chen and Huang (2010)]. All ETFs produce negative asymmetric volatility effects. Two financial instruments converged in their values. The empirical result of EGARCH-M-ARMA for ETF risk (z)shows that based on the ARCH-M model, the expected risk and return is positive for EMFN and EMT ETFs and negative for IYG and VGK ETFs. The result also indicates that the expected risk and return for stock index risk (k) is positive for BRAF/NYA ETFs and negative for EMFN/NAS and IYJ/NYA ETFs. The spillover effect of return (w) in relation to lagged stock index returns has a negative effect on EUFN financial ETF and BRAQ non-financial ETF. According to EGARCH-M-ARMA models, the spillover effect of returns (d) has a positive effect on the returns o f

ETFS	Market	Code	Type	ADF	ARMA	AIC LM	ARCH-LM	GARCH	I AIC	ARMA-LM EGARCH	EGARCH	AIC	ARCH-L
	11 A 71	NYA	Stock	-18.52947***	(3,3)	-5.851 0.392	2 88.4210***	(3,1)	-6.144	0.722	(2,1)	-6.187	2.234
	BKAZIL	BRAF	ETF	-18.2365***	(1,2)	-4.833 0.272	2 10.02260***	(2,1)	-5.056	0.745	(2,2)	-5.052	0.587
	VIIII	NYA	Stock	-25.47335***	(1,1)	-5.787 3.492	2 48.6436***		-6.064	1.136	(2,2)	-6.112	0.442
	CULINA	CHIX	ETF	-22.80675***	(2,2)	-4.988 1.810	0 35.3196***	(3,2)	-5.200	2.245	(3,2)	-5.222	1.939
	VUVND	GSP	Stock	-52.78048***	(2,2)	-5.990 0.610	0 425.3316***	_	-6.464	0.603	(1,3)	-6.482	0.390
	CANADA		ETF	-38.42727***	(1,2)	-5.829 2.325	5 328.1506***	_	-6.435	0.331	(2,1)	-6.443	2.392
EMEBGING	DNEDGING	NAS	Stock	-21.48991***	(0,3)	-5.689 0.281	1 67.7654***	(3,2)	-5.972	0.722		-6.021	1.024
rmancial E1FS	DATIONTIAT		ETF	-21.78522***	(1,1)	-4.831 0.247	7 9.5351***	(3,2)	-4.929	0.810		-4.982	0.619
	FILDODE	NAS	Stock -	-23.18567*R5*	(3,3)	-5.727 2.282	2 67.5660***	<u> </u>	-5.969	0.688		-6.049	0.374
	FOUNT	EUFN	ETF	-23.24754***	(3,0)	-4.533 0.732	2 29.7358***	(3,3)	-4.692	0.710		-4.726	3.771
	TICA	NYA	Stock	-30.85679***	(3,3)	-5.376 1.749	9 296.6376***		-5.923	1.407		-5.966	0.648
	WCD	IAK	ETF	-42.23498***	(1,1)	-4.694 0.126	0.126 294.3146***	(1,3)	-5.503	0.235		-5.526	0.369
	TICA	NYA	Stock	-42.20152***	(3,3)	-5.757 1.629	9 569.9392***		-6.278	0.586		-6.313	0.105
	W CD	IYG	ETF	-59.03104***	(3,2)	-4.792 4.761	1 336.8734***	(3,3)	-5.574	0.299	(3,3)	-5.601	5.241
	DD 4.711	NYA	Stock	-23.01554***	(3,3)	-5.853 1.273	3 49.7363***	(2,3)	-6.117	1.677		-6.176	0.018
	DKAZIL	BRAQ	ETF	-20.20459***	(2,2)	-5.229 0.706	6 42.9210***	(1,1)	-5.360	2.602	_	-5.389	0.105
	VHINV	NYA	Stock	-25.70534***	(2,2)	-5.822 1.260	0 51.5469***	č	-6.081	0.523	(2,3)	-6.144	0.931
		CHII	ETF	-22.10892***	(2,2)	-4.875 3.707	7 51.5404***	0	-5.086	2.065	_	-5.085	2.306
	VUVNU	GSP	Stock	-41.77709***	(3,3)	-5.689 0.303	3 235.6174***	(3,1)	-6.184	1.157	_	-6.209	1.068
	CANADA	XMA	ETF	-39.93016***	(3,3)	-4.721 1.831	1 99.4856***	(3,3)	-5.065	0.685	_	-5.080	1.032
Non-	EMEDGING	NYA	Stock	-28.06256***	(3,3)	-5.818 0.022	2 71.5624***	(3,3)	-6.045	2.101	_	-6.086	0.965
Financial ETFs		EMT	ETF	-25.06849***	(2,2)	-4.842 0.261	1 26.1289***	(1,3)	-4.939	0.254	_	-4.966	2.901
	ETTDODE	NYA	Stook	-33.81221***	(3,3)	-5.533 1.503	3 355.3070***	0	-6.136	0.391	_	-6.179	0.452
	FONOLE	VGK	ETW	-47.9706***	(3,3)	-5.110 2.245	5 290.7812***	(2,2)	-5.572	0.085	_	-5.589	0.487
	TICA	NYA	Stock	-41.91756***	(3,3)	-5.743 1.620	1.620 564.3177***	(1,2)	-6.260	0.722	(3,3)	-6.297	0.189
	NCO.	IYJ	ETF	-56.39291***	(3,3)	-5.522 1.097	7 297.3291***	(1,2)	-5.931	1.040	(3,3)	-5.966	2.448
	TICA	NYA	Stock	-44.92324***	(3,3)	-5.798 0.504	0.504 610.1103***	(3,2)	-6.258	0.129	(1,2)	-6.293	0.493
	000	XLI	ETF	-58.98298***	(2,1)	-5.584 0.125	5 359.8646***	(1,3)	-5.929	0.092	(1.2)	-5.957	0.616

Table 2. Summary statistics of Unit Root, of financial and non-financial ETFs and Stock Indexes

Note: ADF is the t-statistic for the Augmented Dickey-Fuller test with a constant and trend at the level. LM is Breusch-Godfrey senal correlation test and we use Lag(4) to be the best1 penod. AIC is Akaike Info Criterion. *, **, and *** denote significance at 10%, 5*, and 1% or less, respectively. The *p*-Values are shown in brackets.

		mdo o mai	IN LT LITUU	OTTOMIN A		TADIC 3: Spinover effects of return and volatings for stock and E IF returns		211	
		Returns	sur	Volat	ilities	H	Risk	Leverage Effect	Effect
ETFs & Indices	Code	Stock	ETF	Stock	ETF	Stock	ETF	Stock	ETF
	I	1 (d)	2 (w)	3 (1)	4 (v)	5 (k)	e (z)	7 (6)	8 (5)
	DDAE/NVA	-0.029	-0.123	17.167	297.477	0.206	0.131	-0.253	-0.063
	DKAL/NIA	0.253	0.260	0.0732*	0.0008***	0.0046***	0.371	**000.0	0.0206^{*}
	VAWAIND	0.041	-0.029	149.463	84.509	-0.063	0.063	-0.306	-0.069
	CHIMINIA	0.0711*	0.660	0.158	0.0988*	0.563	0.691	***000.0	**000.0
	VEN/CSD	-0.012	0.143	49.949	33.999	-0.063	-0.067	-0.098	-0.084
	JODALIV	0.572	0.178	0.0021 **	0.0117**	0.248	0.143	0.000 * *	•*000.0
Financial	FMFN/NA C	0.063	0.049	99.800	91.168	-0.247	1.332	-0.198	-0.209
ETFS		0.051**	0.539	0.332	0.0155**	0.0412***	0.003***	0.0000 ***	0.0000**
	ETTEN/NAS	0.026	-0.128	78.427	103.903	0.196	-0.172	-0.356	-0.055
	CENTINITOT	0.234	0.0714^{*}	0.152	0.169	0.371	0.143	0.000***	0.0317*
	TA V NV A	-0.033	0.015	-47.547	2.258	-0.057	-0.057	-0.236	-0.151
		0.226	0.728	0.0001***	0.906	0.330	0.223	0.000***	•*000.0
	TVC/NVA	-0.036	0.005	38.181	-0.472	-0.062	-0.057	-0.161	-0.151
	UTWINT	0.0037***	0.905	0.0135**	0.971	0.168	0.0011 * * *	0.000***	••000.0
	DD A O MIV A	0.059	-0.214	279.676	106.671	-0.065	-0.158	-0.287	-0.087
	VINAVIG	0.0149 * *	0.0198**	0.0116**	0.160	0.575	0.408	0.000***	0.0008*
	VHII/NAV	0.053	-0.054	122.561	51.110	-0.076	0.044	-0.327	-0.095
<u>\</u> 2		0.0238**	0.526	0.268	0.438	0.484	0.781	0.000***	0.0001**
	AMA/GSD	0.009	0.027	62.576	82.742	0.073	0.108	-0.096	-0.084
Non		0.574	0.595	0.004***	0.000***	0.362	0.195	0.000***	**000.0
Financial	FMT/NVA	0.054	-0.031	141.640	31.858	0.031	0.776	-0.318	-0.145
FIRANCIAL		0.047**	0.691	0.157	0.144	0.767	0.000***	0.000***	**000.0
ELLS	VCK/NVA	0.047	-0.098	33.302	24.414	-0.063	-0.206	-0.187	-0.110
		0.198	0.158	0.0803*	0.0156**	0.221	0.000***	0.000***	**000.0
	IVI/NVA	-0.022	0.019	-42.090	23.192	-0.072	-0.004	-0.162	-0.528
		0.151	0.628	0.0016***	0.0911*	0.0935*	0.934	0.000***	0.082*
	V I I/NA V	0.028	0.003	32.737	17.690	-0.027	-0.030	-0.124	-0.091
	VINTV	0.182	0.928	0.0038***	0.051*	0.549	0.465	• • • 000.0	••000.0

Note:*,**, and *** are significance at 10%, 5%, 1% levels, respectively. The p-Values are shown in brackets.

52

stock indexes for CHIX/NYA, EMFN/NAS, BRAQ/NYA, CHII/NYA and EMT/NYA ETFs and negative effects on returns of stock index for IYG/NYA ETFs. The spillover effects of volatilities with EGARCH-M-ARMA models show that six ETFs and stock indexes have positive effects on the volatility of the ETFs, and vice versa in terms of lagged stock index volatility. Bilateral connections such as BRAF/NYA, XFN/GSP, XMA/GSP, VGK/NYA, IYJ/NYA, and XLI/NYA ETFs also exist. Lagged stock index volatility has a positive effect on EMFN/NYA and CHIX/NYA ETFs. Lagged ETF volatility has a positive effect on the volatility of the stock index for IYG/NYA and BRAQ/NYA, whereas lagged ETF volatility has a negative effect on the volatility has a negative effect.

Tables 4 and 5 show the results for the GARCH-M-ARMA model, which determine the stable convergence of GARCH. The sum of all coefficients, namely, α_i , ψ_i , β_i , γ 1 and ζ_i , is constrained to be lesser or equal than 1, which is consistent with the result of [Baillie and DeGennaro (1990) and Chen and Huang (2010)]. The estimated values for ψ_i and ζ_i are not equal with those of α_i and β_i in terms of the volatility of financial and non-financial ETFs. This finding implies the existence of the volatility clustering phenomenon. Table 4 presents empirical evidence showing that the previous unexpected return (θ_1) for XFN and IAK is significant at the 1% level and has greater negative impact on financial ETF returns compared to that of non-financial returns XMA and VGK ETFs, which indicated that previous unexpected returns have a negative influence on Canada and USA markets for financial ETFs returns and Canada and Europe market for non-financial ETFs returns. On the other hand, the study finds positive impact of CHIX financial ETFs and IYJ non-financial ETFs returns. The coefficient θ_2 is significant at the 1% level and has positive lagged innovations result for CHIX, BRAO, CHII, and IYJ ETFs, but negative lagged innovations for XFN and EMT; while the coefficient θ_3 for XMA ETFs have a negative lagged innovation result. Table 4 also shows the impact of lagged innovations on current conditional variance, almost all a_1 coefficients have positive and significant results except for the EUFN ETF. The results for a2 coefficients of CHIX, XFN, EMFN, IAK and XMA ETFs have negative significant values, while

ETFS	Code	Model			Me	Mean Equation	tion					Conditional Variance Equation	Variance	Equation		
			α0	αl	a2	a3	61	62	03	a0	al		a3	۴I	42	₹,
	BRAF	BRAF GARCH (2,1)	-0.004	-0.776			0.834	0.055		0.000	-0.005	0.856		0.120		
		ARMA (1,2)	0.254	0.488			0.455	0.403		0.056*	0.917			0.000***		
	CHIX	GARCH(3,2)	-0.001	-0.855	-0.961		0.890	0.990		0.000	1.309		0.849	0.083	0.016	
		ARMA (2,2)	0.639	0.000***	0.000***			0.000***		0.038**	0.000***		0.000***	0.000***		
	XFN	_	0.001	0.785				-0.071		0.000	1.743			0.109		-0.0
		ARMA (1,2)	0.194	0.000***				0.002***		0.000***	0.000***			0.000***	0.036**	0.71
Financia	I EMFN	Financial EMFN GARCH (3,2)	-0.005				0.149			0.000	0.265		0.942	0.090		
ETFS		ARMA (1,1)	0.0548*				0.669			0.139	0.000***		0.000***	0.000***	0.069*	
	EUFN	EUFN GARCH (3,3)	0.002	0.008	-0.065	-0.063				0.000	-0.594				0.084	0.19
		ARMA (3,0)	0.535	0.832	0.144	0.137				0.006***	0.000***		_		-	°.000
	IAK	GARCH (1,3)	0.000	0.743			-0.802			0.000	0.152					
		ARMA (1,1)	0.535	0.000***			0.000***			0.000***	0.000***		0.000***			
	IYG	GARCH (3,3)	0.000	0.283	0.421	-0.003	-0.339	-0.432		0.000	1.298			0.027	0.134	-0.15
		ARMA (3,2)	0.850	0.715	0.472	0.901	0.662	0.494		0.025**	0.000***		0.001***	0.056*	0.000***	0.000*
	BRAQ	BRAQ GARCH (1,1)	0.001	-1.681	-0.937			0.987		0.000				0.096		
		ARMA (2,2)	0.744	0.000***	0.000***		0.000***	0.000***		0.031**		0.000***		0.000***		
	CHII	GARCH (2,2)	-0.003	-1.151	-0.583		1.229	0.649		0.000	0.285	0.531		0.028		
		ARMA (2,2)	0.343	0.000***	0.0237**		0.000***	0.007***		0.0129**		0.154		0.396		
	XMA	GARCH (3,3)	0.000	1.866	-1.582	0.650	-1.866	1.576	-0.668	0.000		-1.373	0.860	0.050	-0.031	0.07
Non			0.801	0.000***	0.000***	0.000***	: 0.000***	0.000***	0.000***	0.000***	$^{\circ}$	0.000***	0.000***	0.001***		°.000
Tingen EMT	EMT	GARCH (1,3)	-0.005	0.024	0.763		0.028	-0.820		0.000				-0.030	0.206	-0.13
FILAIICIAL	_	ARMA (2,2)	0.126	0.872	0.000***			0.000***		0.092*	\circ			0.070*	0.000***	°.000
EILS	VGK	GARCH (2,2)	0.001	1.307	-0.174	-0.251		0.308	0.200	0.000		0.309		-0.008	0.142	
		ARMA (3,3)	0.529	0.000***	0.562	0.116		0.325	0.242	0.000***		0.099*		0.650	0.000***	
	IYI	GARCH (1,2)	0.000		-1.281	-0.481	1.168	1.260	0.458	0.000	0.891			0.009	0.091	
		ARMA (3,3)	0.863	*	0.000***	0.107		0.000***	0.127	0.000***				0.532	0.000***	
	XLI	GARCH (1,3)	0.000	-0.277	-0.040		0.260			0.000	0.915			0.049	0.098	-0.06
		ARMA (2,1)	0.904	0.503	0.041**		0.530			0.000***	0.000***			0.000***		0.000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																

Table 4. GARCH-M-ARMA of financial and non-financial ETFs return

AKMA (2,1) 0.904 0.503 0.041** 0.550 Note:*,**, and *** are significance at 10%, 5%, 1% levels, respectively. The p-Values are shown in brackets.

| _____

ETE.	CTOCU	Medal			Mear	Mean Equation					ů	Conditional Variance Equation	Variance	Equation		
LIFS	NOT C	Iaboli	b0	ßI	β 2	ß	γ1	Y2	73	99	19	b2	6 3	ų	B	ង
	NYA/ BPAF	GARCH (3,1) APMA (3,3)	0.003	-0.579	-0.756 0.000***	-0.730 0.649 0.782	0.649	0.782	0.881	0.000	1.710	-1.691	0.870	0.070		
	NYA/	GARCH(3.3)	0.001		-0.863					0.000	-0.625	0.569	0.544	-0.026	0.231	0.26
	CHIX	ARMA (1,1)	0.399	***000.0	***000.0					0.015**	***000.0	***000.0	***000.0	0.299	0.000***	0.000
		GARCH (3,3)	0.001		-0.813		1.205	0.842		0.000	0.518	-0.625	0.863	0.076	0.047	0.08
			0.289		***000.0	Ū	***000.0	0.000***		***0000.0	***000.0	0.000***	0.000***	0.000***	0.000***	0.000.0
Financial NAS/		GARCH (3,2)	0.002				-0.012	-0.036	-0.034	0.000	1.028	-0.674	0.398	0.004	0.197	
ETFS	EMFN	ARMA (0,3)	0.328				0.803	0.525	0.540	0.007***	0.000***	0.0254**	0.002***	0.931	0.001***	
	NAS/	(m	0.004		0.069		0.049	-0.045	-0.991	***0000.0	0.490	0.105	0.179	0.097	0.079	0.01
	EUFN		0.042**		***000.0		***000.0	***00'0	0.000***	0.800	0.902	0.955	0.923	0.011**	0.840	0.97
	NYA	ล	0.001		0.043		-0.043	-0.094	-0.078	0.000	0.567	0.209	0.046	-0.025	0.188	
		ARMA (3,3)	0.273		0.935		0.971	0.861	0.890	0.000***	0.000***	0.208	0.734	0.000***	0.000***	
		GARCH (3,2)	0.000		0.237		-0.391	-0.252	-0.118	0.000	0.780	0.146	-0.064	-0.020	0.142	
		ARMA (3,3)	0.353	0.703	0.832	0.775	0.665	0.828	0.797	***0000.0	0.000***	0.517	0.612	0.040**	0.000***	
		GARCH (2,3)	0.001		0.313		0.679	-0.376	-0.851	0.000	0.322	0.451			0.226	-0.04
	BRAQ		0.589		0.182		***000.0	0.060	0.000***	0.126	0.362	*7990.0			0.000***	0.67
		GARCH (1,2)	0.001		0.746		-0.093	-0.757		0.000	0.796				0.229	
	CHII		0.372		0.001***		0.761	0.002***		0.003***	0.000***			0.009***	0.000***	
	GSP/	F	0.000		0.483		-0.180	-0.513	-0.150	0.000	2.021	-1.432	0.371	0.032		
	XMA		0.654		0.244		0.826	0.225	0.781	0.014**	0.000***	0.028**	0.190			
Non-	NYA/	m	0.001		-0.169		0.016	0.143	-0.902	0.000	-0.605	0.460	0.621	-0.007	0.266	0.21
Financial	I EMT	\sim	0.482		0.0258**		0.817	0.025**	0.000***	0.006***	0.000***	0.000***	0.000***		-	:000°
ETFs	NYA/	n	0.001		0.167		-0.105	-0.212	-0.388	0.000	0.847					-0.01
	VGK		*9090.0		0.769		0.897	0.729	0.295	***0000.0	0.000***			0.000***		0.70
	NYA/	R	-0.001		-0.228		0.648	0.174	-0.506	0.000	0.864			-0.023	0.133	
	IXI		0.162		0.142		***000.0	0.232	0.000***	***0000.0	0.000***			***0000.0	0.000***	
	NYA/	ลิ	0.000		-0.346	0.747	-0.060	0.297	-0.779	0.000	1.330	-1.083	0.628	0.037	0.074	
	XLI	ARMA (3,3)	0.920	0.728	0.000***	***000.0	0.536	***000.0	***000.0	0.000***	***000.0	***000.0	***000.0	***0000 **** 0.000 **** 0.000 ****	***000.0	

Table 5. GARCH-M-ARMA of financial and non-financial Stock index return

Note: * ** , and *** are significance at 10%, 5%, 1% levels, respectively. The p-Values are shown in brackets.

|

IYG ETF has the only negative significant result for a₃. Meanwhile, the ψ_1 coefficients are significant except for the EMT ETF, revealing that the lagged conditional variance of ETF returns has a positive impact on the current conditional variance except for the for ψ_2 coefficients of XFN and XMA ETFs which showed a negative influence. The last column of Table 4 shows that the ψ_3 coefficients show that EUFN and XMA ETFs have positive significant results, but negative significant results are observed in IYG, EMT and XLI ETFs. The authors observed that NYA/BRAF, GSP/XFN, and NAS/EMFN for financial ETFs and NYA/BRAO and NYA/IYJ for non-financial ETFs have positive and have strong significance at the 1% level of the lagged innovation (1), indicating that these stock index returns have a positive influence, as shown in Table 5. For γ_2 coefficients, the findings show positive results for NYA/BRAF, GSP/XFN, NYA/EMT, and NYA/XLI; and negative results for the γ_3 coefficients of NAS/EUFN, NYA/BRAQ, NYA/EMT, NYA/IYJ, and NYA/XLI except for NYA/BRAF which has a positive result. The conditional variance equation represented by ζ_1 also shows a significant positive effect on stock index returns associated with financial ETFs for NYA/BRAF. GSP/XFN. and NAS/EUFN and non-financial ETFs for GSP/XMA and NYA/XLI. The result for ζ_2 and ζ_3 coefficients have shown positive significant results for financial and non-financial ETFs, which means that lagged innovations and lagged conditional stock index return variance generate the current conditional variance. The authors also found in the volatility of the stock index return that the coefficient of b₁ are almost positive, except for NYA/CHIX financial ETFs and NYA/EMT non-financial ETFs. The positive result means that lagged innovations and lagged conditional stock index return variance generate a positive impact on the current conditional variance. For b₃ coefficients all financial and non-financial ETFs have positive significant results, and for b₂ coefficients, just NYA/CHIX financial ETFs; and only NYA/BRAO and, NYA/EMT for non-financial ETFs have positive results.

5 - Conclusions

This research documented the results of the GARCH-M-ARMA and EGARCH-M-ARMA models to analyze the spillover of returns and volatilities and the leverage effects of financial and non-financial ETFs.

Findings show that a bilateral connection exists between financial and non-financial ETFs, which affects the benchmark indexes. The spillover

effects of volatilities in non-financial ETFs have a strong positive influence on stocks; however, stock indexes have several negative effects on non-financial ETFs. Another finding provides evidence that non-financial ETFs and stock indexes have more spillover effects of volatility than financial ETFs and stocks as exhibited by XMA/GSP, VGK/NYA, and XLI/NYA. These findings indicate that the spillover effects of volatilities have positive bilateral effects on stock indexes and non-financial ETFs in Canada, Europe, and the USA. Financial ETFs in Brazil and Canada have positive spillover effects of volatility.

The spillover effects of ETF return also have a positive effect on a stock index. Tests with EGARCH-M-ARMA reveal that all ETF (financial and non-financial) and stock index returns are strongly negative for leverage effect (δ).

Risk and return relationships are denoted by the z and k coefficients showed that expected risk and return on ETF risk (z) is negative for the USA and European market and positive for emerging market. The result also indicates the expected risk and return for stock index risk (k) is negative for e m e r g i n g m a r k e t b u t p o s i t i v e f o r B r a z i 1. This study can help fund managers and investors establish appropriate strategies for portfolio investment, especially for financial ETFs in the international finance market. Investors can also evaluate stock and benchmark indexes before investing in ETFs, and vice versa.

References

- Baillie, R. and R. DeGennaro, 1990. Stock return and volatility. *Journal of Financial and Quantitative Analysis*, 25 (2), 203-214.
- Balaban, E. A, 2005. Stock returns and volatility: Empirical evidence from fourteen countries. *Applied Economics Letter*, 1 (10), 603-611.
- Chan, K, K. C. Chan, and G. A. Karolyi, 1991. Intraday volatility in the stock index and stock index futures markets. *Review of Financial Studies*, 4 (4), 657-684.
- Chen, J. H, 2011. The spillover and leverage effects of ethical exchange traded funds. *Applied Economics Letter*, 18 (10), 983-987.
- Chen, J. H. and J. F. Diaz, 2012. Spillover and asymmetric volatility effects of leverage and inverse leverage exchange traded funds. *Journal of Business and Policy Research*, 7 (3), 1–10.
- Chen, J. H. J. F. Diaz.and C. S. Chen, 2014. The seasonal and spillover effects

of real estate investment trusts (REIT) exchange- traded funds (ETFs). *International Journal of Research in Finance and Marketing*, 4 (9), 1-13.

- Chen, J. H. and C. Huang, 2010. An analysis of the spillover effects of exchange traded fund. *Applied Economics*, 42 (9), 1115-1168.
- Chen, T., 2004. Forecasting the information content derived from volatility of exchange traded funds. Dissertation, Tamkang University, Taiwan, R.O.C.
- Chou, R, 1987. Volatility persistence and stock valuations; Some empirical evidence using GARCH. *Journal of Applied Econometrics*, 3 (4), 279-294.
- Dean, W. G., R. W. Faff, and G. F. Loudon, 2010. Asymmetry in return and volatility spillover between equity and bond markets in Australia. *Pacific-Basin Finance Journal*, 18 (3), 272-289.
- Deborah, F. S. K, 2009. Emerging-market ETFs industry review. *ETFs and Indexing*, 1, 77-95.
- Engle, R. F. and V. K. Ng, 1991. Measuring and testing the impact of news on volatility. *Journal of Finance*, 48 (5), 1749-1778.
- French, K, G. Schwert. and R. Stambaugh, 1987. Expected stock returns and volatility. *Journal of Financial Economics*, (19), 3-29.
- Gao, S., 2001. ETFs, The new generation of investment funds. *ETFs and Indexing*, 1, 101-105.
- Huang, B. and C. W. Yang, 2002. Volatility of changes in G-5 exchange rates and its market transmission mechanism, *International Journal of Finance and Economics*, 7, 37-50.
- Koutmos, G. and G. G. Booth, 1995. Asymmetric volatility transmission in international stock markets. *Journal of International Money and Finance*, 14 (6), 747-762.
- Krause, T. and Y. Tse, 2013. Volatility and return spillovers in Canadian and U.S. industry ETFs. *International Review of Economics and Finance*, (25), 244–259.
- Li, M., 2007. Wealth, volume and stock market volatility: Case of Hong Kong (1993-2001). *Applied Economics*, (39), 1937-1953.
- Liu, Y. A. and M. S. Pan, 1997. Mean and volatility spillover effects in the U.S. and Pacific-Basin stock markets. *Multinational Finance Journal*, 1, 47-62.
- Mazza, D. B., 2012. Do ETFs increase correlations? *The Journal of Index Investing*, 3 (1), 45-51.
- Morales. L., 2008. Volatility spillovers on precious metals markets: The

effects of the Asian Crisis, *Proceedings of the European Applied Business Research Conference (EABR), Salzburg, Austria, 23rd.-25th. June, 2008.*

- Nelson, B, 1991. Conditional heteroskedasticity in asset returns: A new approach. *Econometrica*, 59 (2), 347–370.
- Noël. A. F. G., 2009. The way ahead for exchange-traded funds: Results from a European survey. *The Journal of Alternative Investments*, 12 (1), 50-54.
- Niarchos, N, Y. Tse, C. Wu.and A. Young, 1999. International transmission of information: A study of the relationship between the U.S. and Greek Stock Markets, *Multinational Finance Journal*, 3 (1), 19-40.
- Schoenfeld, S. A., 2001. ETFs offer the world to investors. *ETFs and Indexing*, 1, 111-117.
- Song, L. J., 2006. The development of Chinese ETFs. *ETFs and Indexing*, 1, 139-149.
- Steeley, J. M, 2006. Volatility transmission between stock and bond markets. Journal of International Financial Markets, Institutions and Money, 16 (1), 71-86.
- Xu, X. E. and H. Fung, 2005. Cross-market linkages between U.S. and Japanese precious metals futures trading. *International Financial Markets, Institutions and Money*, 15, 107-124.