

CERTIFICATE OF ATTENDANCE

The Organizing Committee verifies that

Teresa Liliana WARGASETIA

participated in the 10th European Conference on Marine Natural Products that took place from September 3rd to September 7th, 2017 at the Orthodox Academy of Crete in Kolymbari, Crete (Greece).

On behalf of the Organizing Committee

Ass. Prof. Efstathia IOANNOU

Prof. Vassilios ROUSSIS

10th European Conference on Marine Natural Products

September 3-7, 2017 Kolymbari, Crete, Greece

BOOK OF ABSTRACTS

National and Kapodistrian University of Athens

10th ECMNP

10th European Conference on Marine Natural Products

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

September 3-7, 2017 Kolymbari – Crete, Greece

Edited by Efstathia Ioannou and Vassilios Roussis

Chair of the Conference

Efstathia IOANNOU (National and Kapodistrian University of Athens, Greece)

Co-Chair of the Conference

Vassilios ROUSSIS (National and Kapodistrian University of Athens, Greece)

Local Organizing Committee

Maria COULADIS (National and Kapodistrian University of Athens, Greece) Panagiota GEORGANTEA (National and Kapodistrian University of Athens, Greece)

Stefanos KIKIONIS (National and Kapodistrian University of Athens, Greece)

Aikaterini KOUTSAVITI (National and Kapodistrian University of Athens, Greece)

Olga TZAKOU (National and Kapodistrian University of Athens, Greece)

International Advisory Board

Carmen CUEVAS (PharmaMar, Spain) RuAngelie EDRADA-EBEL (University of Strathclyde, UK) Angelo FONTANA (CNR- Istituto di Chimica Biomolecolare, Italy) Anake KIJJOA (Instituto de Ciências Biomédicas Abel Salazar, Portugal) Matthias KÖCK (Alfred-Wegener-Institut, Germany) Virginia LANZOTTI (University of Naples Federico II, Italy)

Scientific Committee

Conxita AVILA (University of Barcelona, Spain) Valeria COSTANTINO (University of Naples Federico II, Italy) Rainer EBEL (University of Aberdeen, UK) Miriam FALKENBERG (Federal University of Santa Catarina, Brazil) William FENICAL (University of California San Diego, USA) Guðmundur Óli HREGGVIÐSSON (Matis, Iceland) Gabriele KÖNIG (University of Bonn, Germany) Shigeki MATSUNAGA (The University of Tokyo, Japan) Alejandro MAYER (Midwestern University, USA) Ali AL-MOURABIT (CNRS - ICSN, France) Pei-Yuan QIAN (Hong Kong University of Science and Technology, Hong Kong SAR) Ronald QUINN (Griffith University, Australia)

4

Olivier THOMAS (National University of Ireland Galway, Ireland)

SCIENTIFIC PROGRAM

Sunday, September 3, 2017

Arrival of participants

15:00-17:30 Registration of participants
17:30-18:20 Opening Remarks
18:20-19:00 Opening Lecture Chairman: D. J. Newman (Newman Consulting llc, USA)
18:20-19:00 PL1: W. Fenical (University of California San Diego, USA) Marine microbes, new tools and targets for cancer drug discovery
19:00-20:30 Welcome Reception
20:30- Dinner

Monday, September 4, 2017

09:00-11:00	Session I – Isolation and structure elucidation of natural products from marine macro- and microorganisms <i>Chairman:</i> R. J. Quinn (Griffith University, Australia)
09:00-09:30	IL1: A. Hernández Daranas (Universidad de La Laguna, Spain)
	Three-dimensional structure of complex polyoxygenated bioactive compounds: NMR and computational chemistry tools applied to prorocentroic acid
09:30-09:50	OP1: M. Köck (Alfred-Wegener-Institut, Germany) COCON – Twenty years after (COCON in Mnoya 12)
09:50-10:10	OP2: A. Mangoni (Università degli Studi di Napoli "Federico II", Italy)
	Quantum mechanical and other computational techniques as an aid for structure elucidation of natural products: benefits and caveats
10:10-10:30	OP3: S. Urban (RMIT University, Australia) Application of the crystalline sponge method for natural

10.30-10.50	product studies OP4: T. F. Molinski (University of California San Diego
10.00 10.00	USA)
	Absolute stereoassignment of marine natural products: Novel tools and structures
11:00-11:30	Coffee/Tea Break
11:30-13:00	Session II – Isolation and structure elucidation of natural products from marine macro- and microorganisms <i>Chairman:</i> M. H. G. Munro (University of Canterbury, New Zealand)
11:30-11:50	OP5: C. Schleissner (PharmaMar S.A., Spain) Bacterial production of a pederin analog by a free living marine alphaproteobacterium
11:50-12:10	OP6: D. Silva (São Paulo State University, Brazil) <i>Coniothyrium</i> sp., an endophyte from the marine red alga <i>Pyropia spiralis</i> , as a source of sulphated diketopiperazines and novel macrolides
12:10-12:30	OP7: S. Soldatou (National University of Ireland Galway, Ireland) An epigenetically modified endophytic fungus as source of new anti-MRSA natural products
12:30-12:50	OP8: W. W. May Zin (Universidade do Porto, Portugal) Bioactive secondary metabolites from the culture of the mangrove-derived endophytic fungus <i>Eurotium chevalieri</i> KUFA 0006
13:00-14:00	Lunch
15:00-17:00	Session III – Marine -omics
	Chairman: R. Edrada-Ebel (University of Strathclyde, UK)
15:00-15:30	IL2: P. Y. Qian (Hong Kong University of Science and Technology, Hong Kong SAR) Genome-mining coupled with biosynthesis pathways manipulation as a power tool to reveal novel compounds and novel biosynthesis
15:30-15:50	OP9: G. Genta-Jouve (Université Paris Descartes, France)
d.	Deep metabolome annotation and the necessity of a thought experiment: <i>Parazoanthus axinellae</i> as a case
	6

ľ

ł

		study
	15:50-16:10	OP10: N. P. Lopes (University of São Paulo, Brazil)
		Geographic and taxonomic influences on soft coral
		metabolomic fingerprints
	16:10-16:30	OP11: M. Reverter (National University of Ireland
		Galway, Ireland)
		Inter- and intra-specific variations of two Haliciona sp.
		metabolomes and the potential use of metabolomics in
	16.30-16.50	OP12: K P. Duncan (University of Strathelude UK)
	10.30-10.30	Comparative metabolomics of Antarctic and sub Arctic
		actinobacteria
		activity of the second s
	17:00-17:30	Coffee/Tea Break
	17:30-19:00	Session IV – Evaluation of biological and
		pharmacological activities of marine natural products
		Chairman: A. Fontana (CNR- Istituto di Chimica
	12.00 12.20	Biomolecolare, Italy)
	17:30-17:50	OP13: S. A. Dyshlovoy (University Medical Center
		Hamburg-Eppendorf, Germany)
		Anticancer and autophagy modulatory properties of
	17.50-18.10	OP14: P. C. Jimanaz (Universidade Federal de São Paulo
	17.50 10.10	Brazil)
		Further insights on the mode of action of sering upone
	18:10-18:30	OP15: I. Svenson (RISE Research Institutes of Sweden,
		Sweden)
		AChE inhibitors isolated from Arctic benthic marine
		invertebrates
	18:30-18:50	OP16: B. Konuklugil (Ankara University, Turkey)
		Bioactive compounds from some marine
		macroorganisms and marine-derived fungi from the
		coastines of Turkey
	19:00-20:30	Poster Presentations Session A (PP1-PP37)
1		
	20:30-	Dinner

T

T

PP27	S. Pinteus
	The invasive seaweed Sargassum muticum as a rich source of
	antimicrobial compounds for human and animal therapeutics
PP28	C. Prata
	Sulfated polysaccharides from the marine algae Hypnea
	musciformis induces anxiolytic-like effect in zebrafish
PP29	J. M. Sánchez López
	Isolation of a new plant growth regulator metabolite from a
	marine-derived fungus (<i>Talaromyces flavus</i>)
PP30	J. Silva
	Invasive seaweeds Asparagopsis armata and Sargassum
	muticum bloactivities for cost-effective and sustainable
0021	Industrial uses
PP31	J. SIIVa Bilingaria hilingata anniched fuertion induced entitumenel
	activity through anontosis
PP32	H Solanki
	A new allene from the Pacific cyanobacterium <i>Pseudanabaena</i>
	lonchoides
PP33	A. L. Valverde
	Chemical prospection and cytotoxic activity of the octocoral
	Phyllogorgia dilatata
PP34	J. Viskupicova
	Effects of quercetin-iron complex and quercetin mono-sodium
	salt on calcium regulation
PP35	T. L. Wargasetia
\rightarrow	Marine compounds screening for mortalin-p53 binding
	inhibitor with potential as anti-cancer
PP36	R. M. Young
DD27	Searching the Irish deep for bloactive marine metabolites
PP3/	P. ADdi Illtrastructural alterations in miss calls often and
	administration of okadaic acid and dinonbusistovin-1
PP38	V. Alevandri
1150	C ₁₅ Acetogening from Laurencia microcladia and Laurencia
	alandulifera from the Ionian Sea
PP39	R. Alvariño
	New compounds from Streptomyces spp. act as anti-
	neuroinflammatory agents

PP35

Marine compounds screening for mortalin-p53 binding inhibitor with potential as anti-cancer

Teresa Liliana Wargasetia¹ and Nashi Widodo²

¹Faculty of Medicine, Universitas Kristen Maranatha (Maranatha Christian University), Jl. Prof. Drg. Suria Sumantri MPH No. 65 Bandung 40164 Indonesia, ²Biology Department, Faculty of Mathematics and Natural Sciences, The University of Brawijaya, Jl. Veteran Malang 65145 Indonesia E-mail: Teresa.lw@med.maranatha.edu

Cancer is the second leading cause of death worldwide. High toxicity and side-effects of some cancer chemotherapy drugs increase the demand for new anti-cancer drugs from natural products. In recent years, attention has been devoted to searching for anti-cancer agents from marine natural products. Mortalin/mtHsp70, a stress response protein, has been reported to contribute to the process of carcinogenesis by several ways including inhibition of the transcriptional activation of p53.¹ In this study, we used computational molecular docking as a tool to find compounds that have potential as anti-cancer by inhibiting the binding between mortalin and p53.

Marine compounds data was taken from the nuBBE database.² To know the anti-cancer potential of the compounds from the database, docking mortalin to the p53 binding domain of the compounds were performed using the Vinaautodock algorithm with pyrx software. The potential inhibition of the binding of mortalin with p53 by the active compounds were analyzed by affinity binding between mortalin and the p53 binding domain of active compound ligands, also by a similarity between the position of mortalin-active compound ligand bindings with mortalin-withanone binding as a positive control. Proteins were visualized with discorystudio software.

The binding affinity between mortalin and ligand from 25 marine active compounds were between a range of -4 to -6,7 kcal/mol. Based on the high binding affinity between mortalin and p53 binding domain of active compound ligands and their binding position compared with a control, it is predicted that compounds that have potential to inhibit the

¢

Ē

binding between p53 and mortalin are 1-(5,7-dihydroxy-2,2-dimethylchroman-6-yl)-3-(1,1,4a-trimethyl-2,3,4,4a,9a hexahydro-1H-xanthen-7-yl) propan-1-one, 20α -3-hydroxy-2-oxo-24-nor-friedela-1-10,3,5,7 tetraen -carboxylic acid-29-methylester (Pristimerin) and 5-hydroxy-N-methylseverifoline.

[1] Yun C. O., Bhargava P., Na Y., Lee J. S., Ryu J., Kaul S. C., Wadhwa R. Sci. Rep., 2016, 7, 4.

[2] Valli M., dos Santos R. N., Figueira L. D., Nakajima C. H., Castro-Gamboa I., Andricopulo A. D., Bolzani V. S. *J. Nat. Prod.*, **2013**, 76, 439–444.

188

Marine Compound Screening for Mortalin-p53 Binding Inhibitor with Potential as Anti-cancer

Teresa Liliana Wargasetia¹, Nashi Widodo²

¹Faculty of Medicine, Universitas Kristen Maranatha (Maranatha Christian University) Bandung Indonesia

²Biology Department, Faculty of Mathematics and Natural Sciences, The University of Brawijaya Malang Indonesia

Introduction

Cancer is the second leading cause of death worldwide. High toxicity and side-effects of some cancer chemotherapy drugs increase the demand for new anti-cancer drugs from natural products. In recent years, attention has been devoted to searching for anti-cancer agents from marine natural products. Mortalin/mtHsp70, a stress response protein, has been reported to contribute to the process of carcinogenesis by several ways including inhibition of the transcriptional activation of p53.¹ In this study, we used computational molecular docking as a tool to find compounds that have potential as anti-cancer by inhibiting the binding between mortalin and p53.

Material and Methods

Marine compounds data was taken from the nuBBE database.² To know the anti-cancer potential of the compounds from the database, docking mortalin to the p53 binding domain of the compounds were performed using the Vinaautodock algorithm with pyrx software. The potential inhibition of the binding of mortalin with p53 by the active compounds were analyzed by affinity binding between mortalin and the p53 binding domain of active compound ligands, also by a similarity between the position of mortalin-active compound ligand bindings with mortalin-withanone binding as a positive control. Proteins were visualized with discorystudio software.

Figure 1. Mortalin structure has two domains, the small part (left) has a p53 binding domain (red circle), which is used for screening active compounds that can block the mortalin bond with p53 (A). Illustration of mortalin binds to p53 so that p53 can not enter the nucleus to activate apoptosis and cell cycle arrest (B).

Table 1. The binding affinity between mortalin & marine active compound ligands

No	Ligand	Binding Affin- ity (kcal/mol)	No	Ligand	Binding Affinity (kcal/mol)	base	ed on d	locking ana	lysis.	ig between p55 and n
01	Withanone (+ control)	-7.2	14	nubbe_423	-4.9		No	NuBBE ID	Molecule name	Molecule structure
02	nubbe_1208	-6.7	15	nubbe_138	-4.5	_	1	1208	1-(5,7-dihydroxy-2,2-dimethylchroman-6-yl)-3-	
)3	nubbe_87	-6.7	16	nubbe_627	-4.5				(1,1,4a-trimethyl-2,3,4,4a,9a-hexahydro-1H-	
)4	nubbe_1485	-6.6	17	nubbe_629	-4.5				xanthen-7-yl)propan-1-one	НО ОН
05	nubbe_1483	-6.4	18	nubbe_1690	-4.4					H ₂ C CH ₂
6	nubbe_1415	-6.2	19	nubbe_55	-4.4		2	87	Pristimerin; 20α-3-hydroxy-2-oxo-24-nor-friedela	
7	nubbe_1484	-6.0	20	nubbe_631	-4.4				-1-10,3,5,7-tetraen-carboxylic acid-29-	
8	nubbe_152	-5.9	21	nubbe_424	-4.3				methylester	
9	nubbe_514	-5.3	22	nubbe_425	-4.3		3	1485	5-hvdroxy-N-methylseverifoline	
0	nubbe_149	-5.2	23	nubbe_43	-4.3			TIOO		но
1	nubbe_1476	-5.1	24	nubbe_628	-4.3					
2	nubbe_150	-5.1	25	nubbe_630	-4.2					
3	nubbe_151	-5.0	26	nubbe_1691	-4.0					OH CH3

Figure 2. The binding position between mortalin & ligand of marine compound potentially inhibiting p53 binding with mortalin. Mortalin (macrostructure) binds to NuBEE 1208 (A), NuBEE 87 (B), NuBEE1485 (C), withanone (D). All marine compounds bind to the same binding site as the +control (withanone). Mortaline is visualized in cartoon (top panel) and surface (bottom panel).

Table 2. Compounds that have notential to inhibit the binding between p53 and mortalin.

01	Withanone (+ control)	-7.2	14	nubbe_423	-4.9
-	nubbe_1208	-6.7	15	nubbe_138	-4.5
03	nubbe_87	-6.7	16	nubbe_627	-4.5
04	nubbe_1485	-6.6	17	nubbe_629	-4.5
05	nubbe_1483	-6.4	18	nubbe_1690	-4.4
06	nubbe_1415	-6.2	19	nubbe_55	-4.4
07	nubbe_1484	-6.0	20	nubbe_631	-4.4
08	nubbe_152	-5.9	21	nubbe_424	-4.3
09	nubbe_514	-5.3	22	nubbe_425	-4.3
10	nubbe_149	-5.2	23	nubbe_43	-4.3
11	nubbe_1476	-5.1	24	nubbe_628	-4.3
12	nubbe_150	-5.1	25	nubbe_630	-4.2
13	nubbe_151	-5.0	26	nubbe_1691	-4.0

Conclusion

The binding affinity between mortalin and ligand from 25 marine active compounds were between a range of -4 to -6,7 kcal/mol. Based on the high binding affinity between mortalin and p53 binding domain of active compound ligands and their binding position compared with a control, it is predicted that compounds that have potential to inhibit the binding between p53 and mortalin are 1-(5,7-dihydroxy-2,2-dimethyl-2,3,4,4a,9a hexahydro-1H-xanthen-7-yl) propan-1-one, 20α -3-hydroxy-2-oxo-24-nor -friedela-1-10,3,5,7 tetraen -carboxylic acid-29-methylester (Pristimerin) and 5-hydroxy-N-methylseverifoline.

Ref:

[1] Yun CO, Bhargava P, Na Y, Lee JS, Ryu J, Kaul SC, Wadhwa R, Relevance of mortalin to cancer cell stemness and cancer therapy, Scientific Reports, 2016, 7:4. [2] Valli M, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I, Andricopulo AD, Bolzani VS, Development of a natural products database from the biodiversity of Brazil. J Nat Prod, 2013, 76 (3), 439–444.