ISSN: 2086-179 39 ACSIS09 PROCEEDINGS **International Conference on**

Advanced Computer Science and Information Systems December 7th- 8th, 2009 Universitas Indonesia, Jakarta - Indonesia

Organized by

Faculty of Computer Science Universitas Indonesia

ISSN: 2066-1796

Proceedings of the International Conference on Advanced Computer Science and Information Systems (ICACSIS 2009)

Universitas Indonesia December 7th-8th, 2009

Editors :

Dr. Mirna Adriani R. Yugo K. Isal, M.Sc Dr. Wisnu Jatmiko Dr. Bob Hardian Dr. Petrus Mursanto Adila Alfa Krisnadhi, M.Sc Herry, M.Kom

Organized by

Faculty of Computer Science Universitas Indonesia

Committee

Honorary Chairs:

- Mohammad Nuh Minister of National Education, Republic of Indonesia
- Tifatul Sembiring
 Minister of Communication and Information, Republic of Indonesia
- Gumilar R. Somantri Rector of Universitas Indonesia, INA
- T. Basaruddin
 Dean of Faculty of Computer Science Universitas Indonesia, INA
- T. Fukuda Nagoya University, JPN
- T. Usagawa Kumamoto University, JPN
- S. Hölldobler Technische Universität Dresden, GER
- S. Bressan National University of Singapore, SIN
- K. Sekiyama Nagoya University, JPN
- M. Ohka Nagoya University, JPN

General Chairs:

- Mirna Adriani, Universitas Indonesia, INA
- Yugo K. Isal, Universitas Indonesia, INA

Program Chairs:

- W. Jatmiko, Universitas Indonesia, INA
- B. Hardian, Universitas Indonesia, INA

Technical Program Committee:

- A. Azurat, Universitas Indonesia, INA
- A. Buono, Bogor Agricultural University, INA
- A. Djunaidi, Sepuluh November Institute of Tech., INA
- A. Muis, Universitas Indonesia, INA
- A. Murni, Universitas Indonesia, INA,
- A. N. Hidayanto, Universitas Indonesia, INA
- A. Naba, Brawijaya University, INA
- A. Purwarianti, Bandung Institute of Tech., INA
- A. S. Baskoro, Universitas Indonesia, INA
- A. S. Nugroho, BPPT, INA
- A. Sofyan, Bandung Institute of Tech., INA
- A. Zainal A., Sepuluh November Institute of Tech., INA
- B. A. Nazief, Universitas Indonesia, INA

- B. H. Widjaja, Universitas Indonesia, INA
- B. Yuwono, Universitas Indonesia, INA
- D. I. Sensuse, Universitas Indonesia, INA
- E. K. Budiardjo, Universitas Indonesia, INA
- G. Kiswanto, Universitas Indonesia, INA
- H. Budiarto, BPPT, INA
- H. M. Manurung, Universitas Indonesia, INA
- H. Manik, Bogor Agricultural University, INA
- H. Santoso, Nagaoka University of Technology, JPN
- H. Suhartanto, Universitas Indonesia, INA
- H. Yussof, Nagoya University, JPN
- I. Budi, Universitas Indonesia, INA
- I. Fanany, Tokyo Tech. JPN
- I. Meilano, Bandung Institute of Tech, INA
- I. Yusuf, University of Tanjungpura, INA
- I. P. Gunawan, Universitas Multimedia Nusantara, INA
- K. Watanabe, Saga University, JPN
- L. Y. Stefanus, Universitas Indonesia, INA
- Marimin, Bogor Agricultural University, INA
- M. Nakajima, Nagoya University, JPN
- M. R. Widyanto, Universitas Indonesia, INA
- M. Jamal, Bandung Institute of Tech., INA
- Nurhasan, Bandung Institute of Tech., INA
- P. Mursanto, Universitas Indonesia, INA
- R. Budiarto, University Sains Malaysia, MLY
- S. Kuswadi, Sepuluh November Institute of Tech., INA
- S. Yazid, Universitas Indonesia, INA
- T. A. Masoem, Universitas Indonesia, INA
- W. C. Wibowo, Universitas Indonesia, INA
- W. S. Nugroho, Universitas Indonesia, INA
- W. Prasetya, Utrecht University, Netherlands
- Y. G. Sucahyo, Universitas Indonesia, INA
- Y. Hasegawa, Tsukuba University, JPN
- Z. A. Hasibuan, Universitas Indonesia, INA
- Z. Zyada, Tanta University, Egypt

-

Table of Contents

 Welcome Message from Dean of Faculty of Computer Science Universitas Indonesia Welcome Message from Rector of Universitas Indonesia Committee Table of Content Plenary Lectures Cognitive Science, Computational Logic and Connectionism <i>Prof. Steffen Hölldobler, Technische Universität Dresden, Germany</i> Binaural Hearing Model and its Applications <i>Prof. Tsuyoshi Usagawa, Kumamoto University, Japan</i> Self-Organizing Control for Distributed Autonomous Systems <i>Prof. Kosuke Sekiyama, Nagoya University, Japan</i> A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling <i>Prof. Stefphane Bressan, National University of Singapore, Singapore</i> Recent Topics on Robotic Tactile Sensors <i>Prof. Masahiro Ohka, Nagoya University University, Japan</i> Image Processing Motion Blur Identification <i>Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman</i> Color Segmentation for Extracting Symbols and Characters of Road Sign Images <i>Aryuanto , Koichi Yamada, and F. Yudi Limpraptono</i> Lungs Segmentation by Developing Binary Mask 	Welcome Message from General Chairs	ł					
 Welcome Message from Rector of Universitas Indonesia Committee Table of Content Plenary Lectures Cognitive Science, Computational Logic and Connectionism <i>Prof. Steffen Hölldobler, Technische Universität Dresden, Germany</i> Binaural Hearing Model and its Applications <i>Prof. Tsuyoshi Usagawa, Kumamoto University, Japan</i> Self-Organizing Control for Distributed Autonomous Systems <i>Prof. Kosuke Sekiyama, Nagoya University, Japan</i> A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling <i>Prof. Stephane Bressan, National University of Singapore, Singapore</i> Recent Topics on Robotic Tactile Sensors <i>Prof. Masahiro Ohka, Nagoya University University, Japan</i> Motion Blur Identification <i>Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman</i> Color Segmentation for Extracting Symbols and Characters of Road Sign Images <i>Aryuanto, Koichi Yamada, and F. Yudi Limpraptono</i> 	Welcome Message from Dean of Faculty of Computer Science Universitas	ii					
Committee Table of Content Plenary Lectures Cognitive Science, Computational Logic and Connectionism Prof. Steffen Hölldobler, Technische Universität Dresden, Germany Binaural Hearing Model and its Applications Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Indonesia						
 Table of Content Plenary Lectures Cognitive Science, Computational Logic and Connectionism Prof. Steffen Hölldobler, Technische Universität Dresden, Germany Binaural Hearing Model and its Applications Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University. Japan Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Welcome Message from Rector of Universitas Indonesia	iii					
 Plenary Lectures Cognitive Science, Computational Logic and Connectionism Prof. Steffen Hölldobler, Technische Universität Dresden, Germany Binaural Hearing Model and its Applications Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Motion Bhur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Committee						
 Cognitive Science, Computational Logic and Connectionism Prof. Steffen Hölldobler, Technische Universität Dresden, Germany Binaural Hearing Model and its Applications Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stéphane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Table of Content	vii					
 Cognitive Science, Computational Logic and Connectionism Prof. Steffen Hölldobler, Technische Universität Dresden, Germany Binaural Hearing Model and its Applications Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stéphane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 							
 Prof. Steffen Hölldobler, Technische Universität Dresden, Germany Binaural Hearing Model and its Applications Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Plenary Lectures						
 Binaural Hearing Model and its Applications Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stéphane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Cognitive Science, Computational Logic and Connectionism	1					
 Prof. Tsuyoshi Usagawa, Kumamoto University, Japan Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Prof. Steffen Hőlldobler, Technische Universität Dresden, Germany						
 Self-Organizing Control for Distributed Autonomous Systems Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Binaural Hearing Model and its Applications	7					
 Prof. Kosuke Sekiyama, Nagoya University, Japan A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Prof. Tsuyoshi Usagawa, Kumamoto University, Japan						
A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding Window Sampling Prof. Stephane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Self-Organizing Control for Distributed Autonomous Systems	11					
 Window Sampling Prof. Stéphane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	Prof. Kosuke Sekiyama, Nagoya University, Japan						
 Prof. Stéphane Bressan, National University of Singapore, Singapore Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono 	A Tutorial on Sampling Data Streams: From Reservoir Sampling to Sliding	13					
Recent Topics on Robotic Tactile Sensors Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Window Sampling						
Prof. Masahiro Ohka, Nagoya University University, Japan Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto , Koichi Yamada, and F. Yudi Limpraptono	Prof. Stephane Bressan, National University of Singapore, Singapore						
Image Processing Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto , Koichi Yamada, and F. Yudi Limpraptono	Recent Topics on Robotic Tactile Sensors	17					
Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Prof. Masahiro Ohka, Nagoya University University, Japan						
Motion Blur Identification Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono							
Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Image Processing						
Color Segmentation for Extracting Symbols and Characters of Road Sign Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Motion Blur Identification	23					
Images Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Irwan P. Gunawan, Erik Kalalembang, and Koredianto Usman						
Aryuanto, Koichi Yamada, and F. Yudi Limpraptono	Color Segmentation for Extracting Symbols and Characters of Road Sign	29					
	Images						
Lungs Segmentation by Developing Binary Mask	Aryuanto , Koichi Yamada, and F. Yudi Limpraptono						
	Lungs Segmentation by Developing Binary Mask	34					

Saleem Iqbal and Amir Hanif Dar

ICACSIS 2009

ISSN: 2066-1796

Performance Evaluation of Pap Smear Cell Image Classification Using Quantitative	
and Qualitative Features Based on Multiple Classifiers	
Dwiza Riana and Aniati Murni	
Color Image Restoration using Robust Neuro-Fuzzy Network Approach	45
Rully Soelaiman, A. Dista Satria, and Yudhi Purwananto	
Determining Surface Roughness Level Based on Texture Analysis	
Dedy Septiadi and Aulia MT. Nasution	
Application of Particle Swarm Optimization for Edge Detection of Molten Pool in	57
Aluminum Pipe Welding	
Ario Sunar Baskoro, Rui Masuda, and Yasuo Suga	
Batik Image Reconstruction Based on Codebook and Keyblock Framework	64
Wahyudi, Ade Azurat, Ruli Manurung, and Aniati Murni	

Image Retrieval

Segmentation Based Retrieval on General Images	
Suhendro Y. Irianto and Sri Lestari	
Image Searching using Heuristic Method for Image Retrieval System	74
Yeni Herdiyeni and Fitria Yuningsih	
Recognition of Batik Motifs Using the Generalized Hough Transform	79
Hadaiq R. Sanabila and Ruli Manurung	
Clustering Batik Images Based on Log-Gabor and Colour Histogram Features	85
Laksmita Rahadianti, Ruli Manurung, and Aniati Murni	

Information Retrieval

Random Forests Approach for Bibliographic Extraction	91
Cho Cho Khaing	
Implementation of Citation Analysis in Indonesian Digital Library	95
Stevanus Djojokusumo, Arya Tandy, and Gunawan	
Finding Structured and Unstructured Features to Improve the Search Result of	100
Complex Question	
Dewi Wisnu Wardani	

Developing Indonesian-English Speech-to-Speech Translation System	
Darwin Cuputra and Mirna Adriani	
Spoken Document Retrieval Using Statistical Methods	111
Armando Yonathan and Mirna Adriani	
Strong's Concordance Formulation for Indonesian New Testament Bible	114
Gunawan, Devi Dwi Purwanto, Herman Budianto, and Indra Maryati	
Implementation of Indonesian Automated Speech Recognition for OOV Detection	120
Aswin Juari and Ayu Purwarianti	
Automated Essay Grading System Using SVM and LSA for Essay Answers in	124
Indonesian	
Rama Adhitia and Ayu Purwarianti	
Retrieving Opinion in Indonesian Blogs	130
Clara Vania and Mirna Adriani	
Pattern Based Approach in Indonesian Question-Answering System	134
Hapnes Toba and Mirna Adriani	

Software Engineering

Modeling and Analysis of Combined Method for Software Aging	139
May Tar Hla Myint	
Application of Dominant-based Rough Set Approach for Defining Relative Quality	144
of Object Oriented Software	
Petrus Mursanto, and Ardhi Tomiarfi	
Service Oriented Architecture Reference Architecture Blueprint	149
Edison, Virginia Tulenan, and Ford Lumban Gaol	
The Analysis of UML to SystemC Model Transformation on Embedded System	155
Design	
Maman Abdurohman, Kuspriyanto, Sarwono Sutikno, and Arif Sasongko	
Basic Design of BAIK - Scripting Language with Indonesian Lexical Parser for	160
Internet based Software Development	
Haris Hasanudin	
The Structure of Software Requirement Specification Patterns: UML Based	166
Template	

Eko K. Budiardjo

1000

Developing Indonesian-English Speech-to-Speech Translation System	106
Darwin Cuputra and Mirna Adriani	
Spoken Document Retrieval Using Statistical Methods	111
Armando Yonathan and Mirna Adriani	
Strong's Concordance Formulation for Indonesian New Testament Bible	114
Gunawan, Devi Dwi Purwanto, Herman Budianto, and Indra Maryati	
implementation of Indonesian Automated Speech Recognition for OOV Detection	120
Aswin Juari and Ayu Purwarianti	
Automated Essay Grading System Using SVM and LSA for Essay Answers in	124
Indonesian	
Rama Adhitia and Ayu Purwarianti	
etrieving Opinion in Indonesian Blogs	130
Clara Vania and Mirna Adriani	
Pattern Based Approach in Indonesian Question-Answering System	134
Hapnes Toba and Mirna Adriani	

. .

Software Engineering

Modeling and Analysis of Combined Method for Software Aging	139
May Tar Hla Myint	
Application of Dominant-based Rough Set Approach for Defining Relative Quality	144
of Object Oriented Software	
Petrus Mursanto, and Ardhi Tomiarfi	
Service Oriented Architecture Reference Architecture Blueprint	149
Edison, Virginia Tulenan,and Ford Lumban Gaol	
The Analysis of UML to SystemC Model Transformation on Embedded System	155
Design	
Maman Abdurohman, Kuspriyanto, Sarwono Sutikno, and Arif Sasongko	
Basic Design of BAIK - Scripting Language with Indonesian Lexical Parser for	160
Internet based Software Development	
Haris Hasanudin	
The Structure of Software Requirement Specification Patterns: UML Based	166
Template	
Eko K. Budiardjo	

CONTRACTOR OF THE OWNER.

Towards Risk-Oriented Security Ontology						170			
Basuki	Rahmad,	Suhono	Н.	Supangkat,	Jaka	Sembiring,	and	Kridanto	
Surendr	6								

IT Governance

Interoperability Model for Public Service Information Systems	175
Didi Sukyadi and Dana I. Sensuse	
Alternative E-Payment B2C (Business to Consumer) Models for Indonesian	181
Community	
Agung Firmansyah, Muhammad Ilman Akbar, Mursal Rais, Mustafa Kamal, and	
Putu Wuri H	
Implementing a Modern Process Management System Based on the MIT	188
Process Handbook	
Putu Wuri Handayani. Stephane Bressan, and Omar Boucelma	
Measuring the Effectiveness of a Simplified COBIT-based IT Process Maturity	198
Assessment Method	
Budi Yuwono, Muhammad Nasri, and Rein Nusa Triputra	
Information Technology Plan as an IT Governance Maturity Driver	204
Budi Yuwono, Rein Nusa Triputra, and Muhammad Nasri	
Biomedical Applications	
Multi-agent Based Medical Diagnosis System	209
Ei Ei Chaw	
Handling Missing Data in Patient Data Preprocessing using Information	215
Visualization	
Hasimah Hj Mohamed, Abdul Razak Hamdan, and Azuraliza Abu Bakar	
Discovering Sequential Disease Patterns in Medical Databases Using FreeSpan	220

Mining Approach

Oviliani Yenty Yuliana, Silvia Rostianingsih, and Gregorius Satia Budhi

ABCD Feature Extraction for Melanoma Skin Cancer Diagnosis	225
Bilqis Amalian, Chastine Fatichah, and M. Rahmat Widyanto	
Application of Non-rigid Image Registration to the Diagnosis of Herniated Nucleus	230
Pulposus	
Iping Supriana and Tahir Arazi	
Survey on Epitope Prediction Method on DNA Vaccine Development	236
B. Solihah, M. Rahmat Widyanto, and Asmarinah	
Microfabrication of Amperometric Glucose Sensor	242
Aminuddin Debataraja, Nur Fauzi Soelaiman, and Latif Mawardi	
Image Thresholding on Segmentation of Teeth in Dental Panoramic Radiographs	248
Agus Zainal Arifin and Dini Adni Navastara	
Signal Processing	
An Initial Energy Detection Utilizing Software Defined Radio	255
Marwanto, M. Adib Sarijari, N. Fisal, Sharifah K. Syed-Yusof, and Rozeha	
A. Rashid	
Blind Sound Separation Using Frequency-Domain and Time-Domain Independent	259
Component Analysis for Machines Fault Detection	
B.T. Atmaja and D.Arifianto	
Underwater Acoustical Remote Sensing Behaviour of Marine Biota	264
Henry M. Manik	
Controlling Mouse Cursor using Head Movement	267
Gunawan, FX. Ferdinandus, Tri Kurniawan Wijaya, Indra Maryati, and Edwin	
Seno Dwihapsoro	

Computer Networks, Computer Architectures, and High

Performance Computing

Exploiting IPv6 Extension Header to Handle Transmission Error for IPv6 Packets273over High Speed Networks

Supriyanto, Iznan H. Hasbullah, and Rahmat Budiarto

Seamless and Secure Mobile IPTV Binding Update using Mobile IPv6	279
Armanda Caesario Cornelis, Primantara Hari Trisnawan, and Rahmat Budiarto	
SF-STEP: Securing Tunnel Endpoints using Separate Filtering IPv4 and IPv6	283
Abidah M. Taib and Rahmat Budiarto	
The Channel Design for TLM Implementation on Embedded System Design	290
Maman Abdurohman, Kuspriyanto, Sarwono Sutikno, and Arif Sasongko	
Reduction of the Bandwidth Request Delay in IEEE 802.16j MMR WiMAX	295
Networks	
Fath Elrahman Ismael, Sharifah K. Syed-Yuof, and Norsh ei la Faisal	
Light Weight Resource-Aware Data Stream Classification	300
Ary Mazharuddin Shiddiqi and Mohammed Medhat Gaber	
Performance of iSCSI Protocol on Virtual Disk in Ethernet LAN	306
Swee Liang Aw and Wafaa Alsalihy	
Performance Evaluation of Single Bus Microprocessor Architecture	312
Petrus Mursanto , Andreas Febrian, Wisnu Jatmiko, and Adhi Yuniarto	
Accelerating Phase Only Correlation For Motion Estimation With Full Search	318
Technique Using Parallel Threading in GPU	
Rosa A. Asmara, Cahya Rahmad, and Anik N. Handayani	
Self PID Tuning Rule Using Grey Prediction Algorithm	323
Ala Eldin Abdallah Awouda and Rosbi Bin Mamat	
Simulation and Analysis of Optimum Energy Flow for an Off-Grid Hybrid Power	329
System	

Ismail Yusuf

Pattern Recognition

 Feature Extraction Method on Microarray Data Classification Based on Information
 333

 Gene Pairs
 Rully Soelaiman, Sheila Agustianty, Yudhi Purwananto, and I.K. Eddy Purnama

 Feature Based Milling Direction of a Faceted Model Based on Intelligent
 341

 Fuzzy 3D Feature Identification
 341

Gandjar Kiswanto, Rahmat Widyanto, and Priadhana Edi Kresnha

Parallel Supervised PNN Structure Determination Algorithm and its	352
implementation using Message Passing Interface	
Herry and Heru Suhartanto	
Potential Use of Machine Vision in Texture Recognition of CNT/Polymer	356
Microelectrode for Conductivity Measurement	
Yudan Whulanza and Gandjar Kiswanto	
Optimized Fuzzy Learning Vector Quantization for Artificial Mixture Odors	360
Discrimination System	
Hadaiq R. Sanabila, Rochmatullah, and Wisnu Jatmiko	
Robotics	
Development of Particle Swarm Fuzzy Controller for Behavior-based Mobile	366
Robot	
Andi Adriansyah	
Proposition of an Adaptive Controller Dominant Type Hybrid Adaptive and	373
Learning Controller for Robot Manipulators	
Munadi and Tomohide Naniwa	
Gradual Pattern Formation of Homogeneus Robot Groups Using Simple Periodic	378
Functions: Case Study Mindstorms NXT Lego Robots	
Nulad W. Pambudi, Adila A. Krisnadhi, Wisnu Jatmiko, and Rizki Mardian	
An Application of Distributed Multihop Robot-based Communication Network in	384
Restricted and Static Environment after Disaster	
Rizki Mardian, Wisnu Jatmiko, Adila A. Krisnadhi, and Nulad W. Pambudi	
Algorithms	
The Superiority of Fibonacci Sequence as Partition Sizes in Ranking Stage in	391
Word-based Block Sorting Text Compression	
R. Yugo Kartono Isal	
Complexity of Odd Even Transposition Parallel Algorithm in Nonlinear Network	397
Models	
Ernastuti and Ravi A. Salim	
Sequential and Parallel Fractal Compression Algorithms for Image Compression	403
Satrya N. Ardhytia and Lely Hiryanto	

409 Solving University Timetabling as a Constraint Satisfaction Problem with Genetic Algorithms Teddy Wijaya and Ruli Manurung e-Learning Applying UTAUT Theory to Reach Better Understanding on The Acceptance and 415 Use of Learning Management System Case Study: Experiential E-Learning of Sanata Dharma University I Gusti Nyoman Sedana and St. Wisnu Wijaya Developing Web-based Communication Media for Learning 421 Widyo Nugroho, Ichwan Suyudi, Fikri Saleh, and Taufik Hidavat Design and Implementation of Learning Object Ontology for e-Learning 427 Personalization Meirna A. Ramadhanie, Siti Aminah, A. Nizar Hidayanto, Adila A. **Krisnadhi** Development of Student Model Ontology for Personalization in an e-Learning 434 System based on Semantic Web Leonny Pramitasari, A. Nizar Hidayanto, Siti Aminah, Adila A. Krisnadhi, Meirna A. Ramadhani Determining Mental States of Students Using a Soft-Computing Approach 440 Handri Santoso, Shusaku Nomura, and Kazuo Nakamura

Author's Index

445

Pattern Based Indonesian Question Answering System

Hapnes Toba and Mirna Adriani Information Retrieval Laboratory Faculty of Computer Science, University of Indonesia Email: hapnes.toba@ui.ac.id, mirna@cs.ui.ac.id

Abstract—This paper describes a pattern based approach to Indonesian question answering system using the Open Ephyra. In this study, we classify the factoid questions types into 8 categories, where each group is trained using specific questions. The results demonstrate the potential of the approach in an automated Indonesian question answering system.

I. INTRODUCTION

uestion answering is a form of information retrieval that concern about an exact answer from a given natural language question rather than a query string. An automated question answering system (QAS) tries to retrieve explicit answers in the form of a single answer or snippets of text rather than a whole document or set of documents. One of the biggest challenges in QAS is how to categorize a question into a particular category that further will be used to find exact answer(s) within a large collection of documents. Research in QAS is initialized during the 70's when [25] developed a system that can recognize natural language in SHRDLU. Such system is further developed by [15] in QUALM, that can recognized stories. The re-initiation of QAS is started in the 90's when the Internet has became a redundant source of information [3].

The results of two main evaluation forum in QAS, TREC (Text Retrieval Conference, i.e. http://trec.nist.gov) from 1999-2007, and CLEF (Cross Language Evaluation Forum, http://www.clefcampaign.org/) from 2002-2008, have shown that question-answering is still need further enhancements. The question-answering techniques that exists from the field of natural language (NLP), information retrieval (IR) and combination of both, are promising, but there is still lack of standardization in methods, techniques and evaluation [8]. According to [3], there is no ultimate QAS. Each approach has its own niche, application environment, and tasks. If the quality of the answers is crucial, NLP should be applied. If facts need to be extracted from text, IR techniques should be used. The main techniques that have been mostly used in QAS research are: semantic analysis using semantic role labeling, name entity recognizer, path dependency [21], semantic markup [16], n-gram passages [4, 5], statistical [11][17], and the combination of semantic structures and probabilistic approach [18].

A common feature of NLP-based QAS is the ability to convert text input into formal representation of meaning such as logic (first order predicate calculus), semantic networks, conceptual dependency diagrams, or frame-based representations [13]. IR-based QAS are usually completed with shallow or deep NLP techniques, focuses on fact retrieval from a large text corpus. Document redundancy, i.e. a number of similar statements that contain the answer, in a large corpus and the use of shallow NLP techniques increase the chance of finding the right answer without any guarantee that the answer is correct. Shallow NLP techniques, combined with statistical methods, pattern learning, and passage retrieval, have been largely used in the extraction of definition answers in TREC and CLEF, as described in [20], [23], [6], and [22]. Future research trend should involve the combination of the approaches into one single system and adapt the techniques to the application domain.

In the Information Retrieval Lab at the University of Indonesia there have been some researches done to initiate the Indonesian QAS and make some contribution in CLEF [2, 24]. Further research approaches can be grouped in three mainstreams, i.e. the semantic analysis [14, 12], statistical approach [1], and the combination of both [9].

In this experiment, we try to adapt the categorization approach within the OE pipeline that used pattern learning approach for Indonesian language. Pattern learning approach is a form of rulebased approach for question categorization. Another approaches that mainly use are language modeling and machine learning based [19]. The final goal of this experiment is to investigate how to fit Indonesian interrogative sentences in an English based QAS, as a preliminary study to develop a QAS that proper to Indonesian language that combines the NLP and statistical approaches. The rest of the paper will be organized as follow: section 2 presents the state-of-the art of Indonesian question categorization and the pattern learning approach that is used in Open Ephyra. Section 3 presents the strategy that is used to develop question patterns from Indonesian interrogative sentences. Section 4 gives the experimental setup and results. Section 5 gives the evaluation of the results, and section 6 is a conclusion and plans for future works.

II. QUESTION CATEGORIZATION

The study of Purwarianti, et. al. 2006 [19], has shown that question categorization for Indonesian interrogative sentence using shallow parser and machine learning can achieved 95% accuracy. However, such learning categorization requires deep analysis in sentence structures to be able to develop a robust parser and extraction of learning features. The problem in such deep analysis for Indonesian language is the limitation of the resources of the language itself, that lack of robust parser.

Another possibility for simpler approach to question categorization is by matching the pattern of each question type, and tries to categorize question based on the position of question words, and various question keywords. To make sure that the categorization can be done, we need thus to develop a number of pattern rules that reflect the structure of each question type.

 OE^1 is an example of QAS that use pattern learning approach to categorize questions. It learns text patterns that can be applied to text passages for answer extraction. OE can learn question-answer pairs and use common retrieval system, i.e. web search engine or various IR system, to fetch document text. OE is an open domain QAS that has modular and extensible framework. It consists of four main modules (see Figure 1): 1). Question analyzer, 2) Query generator; 3) Search engine and 4) Answer extractor. Each of the modules can be used independently and thus suitable to experiment multiple approaches to question-answering in one system.

There are two main steps for the pattern-learning approach in OE. The first is to learn the question patterns from question templates according to each question types. The aim of this step is to interpret the questions and transform them into queries. The second step is to learn the answer pattern from questionanswer pairs. The aim of this second step is to extract answers candidate from relevant document snippets and to rank them. The question templates need to be manually developed according to various interrogative sentences that are independent for each natural language.

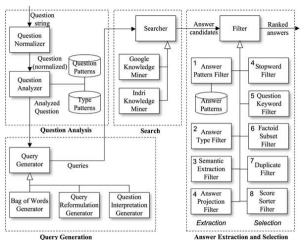


Fig. 1. Open Ephyra Framework (Schlaefer et.al., 2006)

An important strategy in this approach is to determine the objects interpretation from each question, i.e.: the property (PO), target (TO) and context (CO). For example, a question "*Dimana letak kampus UI*?" (*Where lies the campus of UI*?). It has the interpretation of:

- Property: TEMPAT (location)
- Target: kampus (campus)
- Context: UI (University of Indonesia)

The question asks for a property of the target object "kampus", which is a location. The context object "UI", narrows down the search to a particular place. Together, all of this objects form the interpretation of the question that further will also be used in developing a query for the search engine.

OE interprets a question by sequentially matching all the question patterns for each property. If it matches a pattern, OE will extract the target object and the context object. Therefore, it is possible that a question has more than one interpretation, if the question type is not clear enough.

Each of the properties is associated with a set of answer pattern that is assessed and extracted during the second learning phase. The format of an answer pattern is similar to the question patterns, it consists of:

```
a target tag <T>
```

a number of random number of context tag <C>

a property tag <P>.

During the answer extraction phase, OE replaces all occurrences of target or context objects in a text snippet. Every time a snippet matches a pattern, the part of the text that associated to the property tag is extracted. In the example above, the following snippet from a relevant document:

¹ http://www.ephyra.info

"Bus kampus disediakan untuk melayani kebutuhan transportasi mahasiswa di dalam kampus UI Depok"

will be transform into

"Bus kampus disediakan untuk melayani kebutuhan transportasi mahasiswa di dalam <TO> <CO> Depok".

The pattern "*di dalam* <TO> <CO> *Depok*", will be used to extract the property *Depok*. The pattern has been learned from the question-answer pairs which is an answer that needs to be found.

To extract the answer, OE apply two kinds of regular expression (Zhang. 2002.):

 that covers a target tag <T>, a property <P> and any characters in between them, i.e. the context; or or
 covers one word or any characters preceeding

or following the $\langle P \rangle$ tag.

Finally OE will assess the answer patterns and assign a *confidence* score to the patterns. A confidence score is calculated by taking the proportion on how often a pattern could be used to extract a correct answer and the sum of how often it extracts a wrong answer and a right answer. Further, for each extracted property, the total number of snippets that has been assessed is also recorded, to compute the *support*, i.e. the ratio between correct answer and number of snippets. The answer that has the highest confidence and its value is above the support threshold will be considered as the best answer candidate.

III. QUESTION PATTERN DEVELOPMENT

The properties and the question patterns is determined by analyzing 8 types of factoid question, each consists of 5 training questions and 25 testing questions. The question types are coarse grain according to CLEF (Forner, et. al. 2008.), i.e.:

- ORANG (people)
- WAKTU (time)
- TEMPAT (location)
- ORGANISASI (organization)
- UKURAN (measure)
- ANGKA (count)
- OBYEK (object)
- LAIN-LAIN (others).

For each question type, a question pattern is developed which reflects the variations arise in natural language writings or conversations that occur in the training question. The testing question is used to evaluate the accuracy of the pattern recognizer.

During the design of each question pattern, the following steps are taking into account:

- 1. The main question word(s) indicated for each type.
- 2. The position in which keywords of question occurs in an interrogative sentence, that indicates the context and target of a question.
- 3. The alternative of question words or phrases that indicate a special meaning to a question type.

As an example, these are some question patterns for the property location (= where) in Indonesian:

1. Main question word(s):

(dimana|dimanakah) letak <TO> <CO> (dimana|dimanakah) <CO> <TO> (dimana|dimanakah) <TO> berada

2. Position of keywords (context and target):

<TO> ada dimana (saja)? <TO> <PO> ada dimana dimana (saja)? (kah|sih)? <TO> berada <TO> terletak <CO> (apa)? <TO> <CO> (ada)? dimana (saja)? <CO> <TO> (ada)? dimana (saja)? <TO> <CO> ada dimana?

3. Alternative question words or phrases:

(apa|apakah) nama <TO> <CO> (apa|apakah) nama (daerah|tempat|lokasi) <TO> <CO> (apa|apakah) nama (daerah|tempat|lokasi) <CO> <TO> di (lokasi|daerah|tempat) mana (saja)? <TO> <CO> di (lokasi|daerah|tempat) mana (saja)? <CO> <TO> terletak dimana (saja)? <TO> <CO>

During the answer patterns extraction, i.e. after the interpretation has been done, a tuple that consists of: a target, an arbitrary number context objects, and the answer or the property, is generated as query string. The query string will be used by IR system to retrieve the passage that match the pattern. It is possible to selectively add tuples for properties that are not sufficiently covered by the training question in the future to raise the accuracy of the system.

For our example in the previous section, the query string that will be generated is: "#1(kampus) #1(UI) #1(depok)". The answer is included in the query string, this is to ensure that the snippet contain the target and the property.

IV. EXPERIMENTAL SETUP DAN RESULTS

The document collection used in the experiment consists of 5 web documents (news articles, wiki's, and blog) on special issues from different domains. The issues ranges from historical occasions, biography, political news, myths and poetry. Every document that downloaded has positive relevant judgment to a specific question type, i.e. each document has snippets that contains answer(s) for the question given for each type. There are in total 190 documents in 6 MB text. The documents are processed by Perl programming language to form TREC format document, that further indexed using Indri. The index file is 2 MB big, and used as the local corpus for the system.

For the training phase, we prepare 40 questions, i.e. 5 questions for a question type and 1 question per subject. Each training question is has its answer pair in TREC format, that will be used in the pattern extraction phase. An example of the an answer extraction result for location type, is as follow:

```
<TO> [^<]*?<PO_NEtempat>
#correct: 5
#incorrect: 6
Confidence = 0.45454547
Support = 0.035311
```

This mean that this pattern can be found in 11 passages (not necessary in 11 documents), with 5 passages contains correct answer and 6 incorrect answer, and the total number of passages extracted from the all 8 properties is 142 = (5/0.035311).

After the training is done, we run the OE to test how accurate the result of training session. First we run the same question as the training phase, and obtain the following results:

	Interpretation					Answers			
Property	ty Single More	Incorrect (W)	Unsupporte	Inovact (V)	Correct '(R)				
	Correct	Wrong	Correct	Wrong	incorrect (w)	d (U)	illenaci (N)	conect (N)	
People	0	0	5	0	4	0	0	1	
Time	5	0	0	0	3	0	0	2	
Location	5	0	0	0	2	0	0	3	
Organization	2	1	1	1	2	0	0	3	
Measure	4	0	1	0	3	0	0	2	
Number	3	0	2	0	4	0	0	1	
Object	2	1	2	0	2	1	0	2	
Other	4	0	0	1	5	0	0	0	
Total	25	2	11	2	25	1	0	14	

We also test the learning result using the testing questions, that consists of 5 variations for each issues, except for the 'other' type, thus in total 180 questions. The results for the testing are:

Interpretation					Answers			
Property	Single		More		Incorrect (W)	Unsupporte	Inexact (X)	Correct '(R)
	Correct	Wrong	Correct	Wrong	incorrect (w)	d (U)	illexact (A)	
People	6	6	11	2	23	0	0	2
Time	14	4	7	0	21	0	0	4
Location	17	7	0	1	14	0	1	10
Organization	5	13	2	5	21	0	0	4
Measure	7	7	10	1	20	0	2	3
Number	10	3	12	0	21	0	2	2
Object	5	18	1	1	21	1	1	2
Other	1	1	3	0	5	0	0	0
Total	65	59	46	10	146	1	6	27

In the interpretation column, we separate the interpretation for "single" interpretation, i.e.: exact only one interpretation for a question; and a "more" interpretation, means that a question can be interpreted into one or more category, according to the patterns.

The accuracy is calculated for the interpretation results and the answers. We use the accuracy definition from CLEF. 2008., i.e. the average of SCORE(q) over all 200 questions q, where SCORE(q) is 1, if the answer to q assessed as correct, and 0 otherwise.

The accuracy for the tested-training questions, and the testing questions is shown in the following table:

Tested-	Interpretation Accuracy	90.00	
training questions	Answers Accuracy	35.00	
Testing questions	Interpretation Accuracy	61.67	
	Answers Accuracy	15.00	

V. EVALUATION

The accuracy for the tested-training questions is much higher than the testing questions. This result suggests that the patterns used during the training session are not good enough to cover the question variations. Further we have to give extra attention to informality of natural language that is used to write document, especially for blogs and wiki's documents. This experiment is more concern in the interpretation of questions. If we see only the interpretation, than the results is promising. Although it seems that we need to cover more question variations.

The most difficult part to interpret question patterns is for people and organization types. In Indonesian, both can be asked using the "siapa (= who)" question word, and thus gives double interpretation to a specific question, that effects on the confidence score, i.e. give lower score, because less correct answer is extracted.

The object type is also hard to interpret, because the similar question pattern for this type can be occur in another type(s).

VI. CONCLUSION AND FUTURE WORKS

In this experiment, we have adapted the question pattern approach in OE. The result shows that OE is promising to be adapted for Indonesian language. The main shortcoming of the pattern learning approach is that question patterns need to be developed specifically and the answer extraction phase needs redundant sources, i.e. large search space.

There are a number of things need to be further investigated, such as:

- 1. How to generate a more generic pattern that can be used to interpret question accurately.
- 2. How to decrease the runtime during the learning steps, i.e. how to prune the unnecessary pattern to be learned more than once.

- 3. How to deal with ambiguity in question words and keyword phrases that can be occurred in more than one question types.
- 4. How to give sense of contextuality during the answer selection phase. For example how can we deal with a time frame, and thus if the question is about the president in present time, it returns the correct answer, and not the president in the past time, although both answers are can be found as patterns in the relevant documents.

Based on the shortcoming, adaptation of OE into Indonesian language need the following course:

- 1. Develop more fine grained question types that each represent special name-entity (NE) type. For example, for type "location", can be more precisely defined as: university, country, etc.
- 2. Modify or change the natural language specific components, such as: NE tagger, stemmer, phrase chunker, part-of-speech (POS) tagger, and tokenizer.
- 3. Develop a statistical/machine learning question classifier that can be used to categorize questions based on their features, such as: unigram, bigram, or the question word.

REFERENCES

- Adiwibowo, Septian. 2008. Answer Finding in Indonesian-English Question Answering System Using Word Weighting and Information from the Internet. Bachelor Thesis Faculty of Computer Science University of Indonesia.
- [2] Adriani, Mirna. et. al. 2005. University of Indonesia Participation at CLIR - CLEF 2005.
- [3] Andrenucci, Andrea & Sneiders, Eriks. 2005. Automated Question Answering: Review of the Main Approaches. Proceedings of the Third International Conference on Information Technology and Applications (ICITA'05) IEEE Computer Society.
- [4] Buscaldi, Davide, et. al. 2006. N-gram vs. Keyword-based Passage Retrieval for Question Answering. Proceedings of Cross Language Evalution Forum (QA@CLEF 2006).
- [5] Buscaldi, Davide, et. al. 2009. Answering Questions with an n-Gram Based Passage Retrieval Engine. Journal of Intelligent Information System. Springer Netherlands. Published Online 13 March 2009. DOI 10.1007/s10844-009-0082-y.
- [6] Clarke, C. et al., 2001. Web reinforced Question Answering, in D. Harman and E. Voorhees (eds): Proc of TREC 2001, NIST, Gaithersburg, USA.
- [7] CLEF. 2008. GUIDELINES for the PARTICIPANTS in QA@CLEF 2008.
- [8] Ferrucci, et. al. 2009. IBM Research Report: Towards the Open Advancement of Question Answering System. RC24789 (W0904-093) April 22nd.
- [9] Fitria, Lily. 2007. Answer Finding using Sentence Dependency Structure in Question Answering System. Master Thesis Faculty of Computer Science University of Indonesia.
- [10] Forner, Pamela, et. al. 2008. OVERVIEW OF THE CLEF 2008 MULTILINGUAL QUESTION ANSWERING TRACK.
- [11] Ittycheriah, Abraham, et. al. 2001. IBM's Statistical Question Answering System. Proceedings of the 10th Text Retrieval Conference (TREC 2001).
- [12] Jati, Rangga. M. 2009. The Development of Natural Language Generation with Chart Generation Approach and Its Application in Indonesian Question Answering. Bachelor Thesis Faculty of Computer Science University of Indonesia.
- [13] Jurafsky, D and Martin, J.H. 2000. Speech and language processing, Prentice Hall, NJ, USA.

- [14] Larasati, Dian S. and Manurung, Ruli. 2007. Towards a Semantic Analysis of Bahasa Indonesia for Question Answering. Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics (PACLIC).
- [15] Lehnert, Wendy G. 1977. The Process of Question Answering. Dissertation Thesis. Yale University
- [16] Lopez, Vanessa, et. al. 2005. AquaLog: An Ontology-Portable Question Answering System for the Semantic Web. ESWC (European Semantic Web Conference 2005), LNCS (Lecture Notes on Computer Science) 3532, pp. 546 – 562. Springer-Verlag Berlin Heidelberg.
- [17] Metzler, Donald dan Croft. W. Bruce. 2004. Analysis of Statistical Question Classication for Fact-based Questions. Kluwer Academic Publisher.
- [18] Narayanan, Srindi & Harbagiu, Sanda. 2004. Question Answering Based on Semantic Structures.
- [19] Purwarianti, et. al. 2006. Estimation of Question Types for Indonesian Question Sentence. Department of Information and Computer Sciences, Toyohashi University of Technology.
- [20] Ravichandran, D. and Hovy, E.H. 2002. Learning Surface Text Patterns for a Question Answering System", Proc. of ACL-2002, ACL press, USA.
- [21] Schlaefer, Nico. 2007. Deploying Semantic Resources for Open Domain Question Answering. Diploma Thesis. Language Technologies Institute School of Computer Science Carnegie Mellon University.
- [22] Schlaefer, Nico, et. al. 2006. A Pattern Learning Approach to Question Answering within the Ephyra Framework. LNAI 4188, pp. 687–694, Springer-Verlag Berlin Heidelberg.
- [23] Soubbotin, et.al. 2002. Use of Patterns for Detection of Answer Strings: A Systematic Approach, in L.P. Buckland and E.Voorhees (eds): Proc. of TREC 2002, NIST, Gaithersburg, USA.
- [24] Wijono, Sri Hartati, et. al. 2006. Finding Answers to Indonesian Questions from English Documents. Proceedings of Cross Language Evalution Forum (QA@CLEF 2006).
- [25] Winograd, Terry. 1971. Procedures as a Representation for Data in a Computer Program form Understanding Natural Language. Dissertation Thesis. Massachusetts Institute of Technology.
- [26] Zhang, D., Lee, W. 2002. Web Based Pattern Mining and Matching Approach to Question Answering. Proceedings of the 11th Text REtrieval Conference (TREC).