
Published by the IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720

IEEE Computer Society Order Number P5978
ISBN 978-1-5090-6143-3
BMS Part Number CFP16E01-PRT

2016 International Conference on
Advanced Computing and Applications

2016 International Conference on Advanced Com
puting and Applications (ACO

M
P 2016)

23-25 November 2016, Can Tho City, Vietnam

Edited by Lam-Son Lê, Tran Khanh Dang, Josef Küng,
Nam Thoai, and Roland Wagner

ACLab

acomp2016_cover_final.indd 1 10/14/2016 12:04:39 PM

Proceedings

2016 International Conference on
Advanced Computing and Applications

ACOMP 2016

23–25 November 2016
Can Tho City, Vietnam

Editors
Lam-Son Lê

Tran Khanh Dang
Josef Küng
Nam Thoai

Roland Wagner

Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at
the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect
the authors’ opinions and, in the interests of timely dissemination, are published as presented and without change.
Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer
Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P5978

ISBN-13: 978-1-5090-6143-3
BMS Part # CFP16E01-PRT

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office

10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama

Los Alamitos, CA 90720-1314 Tel: + 1 732 981 0060 Minato-ku, Tokyo 107-0062
Tel: + 1 800 272 6657 Fax: + 1 732 981 9667 JAPAN
Fax: + 1 714 821 4641 http://shop.ieee.org/store/ Tel: + 81 3 3408 3118

http://computer.org/cspress
csbooks@computer.org

customer-service@ieee.org Fax: + 81 3 3408 3553
tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Lisa O’Conner
Cover art production by Mark Bartosik

IEEE Computer Society

Conference Publishing Services (CPS)
http://www.computer.org/cps

2016 International Conference
on Advanced Computing

and Applications

ACOMP 2016
Table of Contents

Message from the General Chairs ...viii

Message from the Program Chairs..ix

Organizing Committee...x

Program Committee..xi

Section 1: Advances in Security and Information Systems
Solving the User-Role Reachability Problem in ARBAC with Role Hierarchy ..3

Anh Truong and Dai Hai Ton That

Processing All k-Nearest Neighbor Query on Large Multidimensional Data ..11
Huu Vu Lam Cao, Trong Nhan Phan, Minh Quang Tran, Thanh Luan Hong,
and Minh Nhat Quang Truong

A Bidirectional Local Search for the Stable Marriage Problem ...18
Hoang Huu Viet, Le Hong Trang, SeungGwan Lee, and TaeChoong Chung

Rew-XAC: An Approach to Rewriting Request for Elastic ABAC Enforcement
with Dynamic Policies ...25

Ha Xuan Son, Luong Khiem Tran, Tran Khanh Dang, and Yen Nhi Pham

A Cross-Checking Based Method for Fraudulent Detection on E-Commercial
Crawling Data ...32

Khanh Dang Tran, Duc Dan Ho, Duc Minh Chau Pham, An Khuong Vo,
and Huu Huy Nguyen

Section 2: Model-Based Software Engineering and Enterprise
Engineering
Software Keyphrase Extraction with Domain-Specific Features ..43

Oscar Karnalim

An Application of Bitwise-Based Indexing to Web Service Composition
and Verification ...51

Huynh T. Khai, Bui H. Thang, and Quan T. Tho

vvv

On Business Process Redesign and Configuration: Leveraging Data Mining
Classification & Outliers and Artifact-Centric Process Modeling ..59

Thai-Minh Truong and Lam-Son Lê

A Technique for Generating Test Data Using Genetic Algorithm ...67
Dinh Ngoc Thi, Vo Dinh Hieu, and Nguyen Viet Ha

Method of Mapping Vietnamese Chunked Sentences to Definite Shallow
Structures ...74

Trung Tran and Dang Tuan Nguyen

Section 3: Embedded and Electronic Systems
A Secured OpenFlow-Based Switch Architecture ..83

Bao Ho, Cuong Pham-Quoc, Tran Ngoc Thinh, and Nam Thoai

Toward a Global Power Manager in Energy Harvesting Wireless Sensor
Networks ...90

The Duy Phan Dinh, Trong Nhan Le, and Anh Vu Dinh Duc

Transient Responses of the Doubly-Fed Induction Generator Wind Turbine
under Grid Fault Conditions ..97

T. T. Phan, V. L. Nguyen, M. J. Hossain, A. N. To, H. T. Tran, and T. N. Phan

An Unified Iterative Algorithm for Load Flow Analysis of Power System
Including Wind Farms ...105

T. T. Phan, V. L. Nguyen, M. J. Hossain, A. N. To, and H. T. Tran

A High Performance Dynamic ASIC-Based Audio Signal Feature Extraction
(MFCC) ...113

Tam Chi Nguyen, Lam Dang Pham, Hieu Minh Nguyen, Bao Gia Bui,
Dat Thanh Ngo, and Trang Hoang

An Effective Architecture of Memory Built-In Self-Test for Wide Range
of SRAM ..121

Tin Quang Bui, Lam Dang Pham, Hieu Minh Nguyen, Viet Thai Nguyen,
Thong Chi Le, and Trang Hoang

Section 4: High Performance and Scientific Computing
Provision of Docker and InfiniBand in High Performance Computing ..127

Minh Thanh Chung, An Le, Nguyen Quang-Hung, Duc-Dung Nguyen,
and Nam Thoai

Routing Optimization Model in Multihop Wireless Access Networks
for Disaster Recovery ...135

Cao Vien Phung, Quang Tran Minh, and Michel Toulouse

Minimizing Total Busy Time with Application to Energy-Efficient Scheduling
of Virtual Machines in IaaS Clouds ...141

Nguyen Quang-Hung and Nam Thoai

vivivi

Section 5: Image Processing and Visualization
G-Strongly Positive Scripts and Critical Configurations of Chip Firing Games
on Digraphs ..151

Tran Thi Thu Huong

A Research on 3D Model Construction from 2D DICOM ..158
Van Sinh Nguyen, Manh Ha Tran, and Hoang Minh Quang Vu

Image Super-Resolution Using Image Registration and Neural Network Based
Interpolation ..164

Nguyen The Man and Truong Quang Vinh

Author Index ..169

viiviivii

Organizing Committee

General Chairs
Thoai Nam, HCMC University of Technology, Vietnam
Roland Wagner, Johannes Kepler University Linz, Austria

Steering Committee
Elisa Bertino, Purdue University, USA
Kazuhiko Hamamoto, Tokai University, Japan
Koichiro Ishibashi, The University of Electro-Communications, Japan
M-Tahar Kechadi, University College Dublin, Ireland
Dieter Kranzlmüller, Ludwig Maximilians University, Germany
Josef Küng, Johannes Kepler University Linz, Austria
Manuel Clavel, The IMDEA Software Institute, Spain
Fabio Massacci, University of Trento, Italy
Atsuko Miyaji, Japan Advanced Institute of Science and Technology, Japan
Benjamin Nguyen, Institut National des Sciences Appliqués Centre Val de Loire, France
Beng Chin Ooi, National University of Singapore, Singapore
A Min Tjoa, Technical University of Vienna, Austria
Shigeki Yamada, National Institute of Informatics, Japan

Program Chairs
Josef Küng, Johannes Kepler University Linz, Austria
Tran Khanh Dang, HCMC University of Technology, Vietnam
Lam-Son Lê, HCMC University of Technology, Vietnam

Publicity Chairs
Phan Trong Nhan, HCMC University of Technology, Vietnam
Tran Ngoc Thinh, HCMC University of Technology, Vietnam
Le Thanh Sach, HCMC University of Technology, Vietnam
Quan Thanh Tho, HCMC University of Technology, Vietnam
Hoang Tam Vo, IBM Research, Australia

xxx

Program Committee
Nguyen Thanh Binh, HCMC University of Technology, Vietnam
Stephane Bressan, National University of Singapore, Singapore
Michael S. Brown, National University of Singapore, Singapore
Pham Quoc Cuong, HCMC University of Technology, Vietnam
Dirk Draheim, Tallinn Technology University, Estonia
Nguyen Tuan Dang, University of Information Technology, Vietnam
Alberto M. Gambaruto, Barcelona Supercomputing Center, Spain
Uyen-Synh Ha-Viet, HCMC International University, Vietnam
Tran Van Hoai, HCMC University of Technology, Vietnam
Trung-Hieu Huynh, Industrial University of Ho Chi Minh City, Vietnam
Tomohiko Igasaki, Kumamoto University, Japan
Koichiro Ishibashi, The University of Electro-Communications, Japan
Ottar Johnsen, Applied Science University, Switzerland
Eiji Kamioka, Shibaura Institute of Technology, Japan
Surin Kittitornkun, King Mongkut’s Institute of Technology Ladkrabang, Thailand
Pierre Kuonen, Applied Science University, Switzerland
Quan Le-Trung, Univerisity of Information Technology, Vietnam
Nanjangud Narendra, IBM Research, India
Chin Wei Ngan, National University of Singapore, Singapore
Van Vu Nguyen, HCMC University of Science, Vietnam
Benjamin Nguyen, INRIA Rocquencourt, France
Minh-Son Nguyen, University of Information Technology, Vietnam
Thanh-Binh Nguyen, Da Nang University, Vietnam
Alex Norta, Tallinn Technology University, Estonia
Mizuhito Ogawa, Japan Advanced Institute of Science and Technology, Japan
Masato Oguchi, Ochanomizu University, Japan
Eric Pardede, La Trobe University, Australia
Cong-Duc Pham, University of Pau, France
Cong-Kha Pham, The University of Electro-Communications, Japan
Tran Minh Quang, HCMC University of Technology, Vietnam
Thanh-Sach Le, HCMC University of Technology, Vietnam
Thanh-Tho Quan, HCMC University of Technology, Vietnam
Shigenori Tomiyama, Tokai University, Japan
Tri Kurniawan, Brawijaya University, Indonesia
Thai-Nghe Nguyen, Can Tho University, Vietnam
Thanh-Nghi Do, Can Tho University, Vietnam
Minh-Triet Tran, HCMC University of Science, Vietnam
Tuan-Anh Truong, HCMC University of Technology, Vietnam
Tran Ngoc Thinh, HCMC University of Technology, Vietnam
Nhan-The Luong, HCMC University of Technology, Vietnam
Tran-Vu Pham, HCMC University of Technology, Vietnam
Hong Trang Le, HCMC University of Technology, Vietnam
Pham Hoang Anh, HCMC University of Technology, Vietnam

xixixi

Ngoc-Chau Vo, HCMC University of Technology, Vietnam
Duc-Dung Nguyen, HCMC University of Technology, Vietnam
Khuong Nguyen-An, HCMC University of Technology, Vietnam
Minh-Sang Tran-Le, HCMC University of Technology, Vietnam
Phan Trong Nhan, HCMC University of Technology, Vietnam
Quang-Minh Huynh, HCMC University of Technology, Vietnam
Dinh-Tuyen Nguyen, HCMC University of Technology, Vietnam
Lam-Son Lê, HCMC University of Technology, Vietnam
Alain Wegmann, École Polytechnique Fédérale de Lausanne, Switzerland

xiixiixii

Software Keyphrase Extraction with Domain-specific
Features

Oscar Karnalim
Faculty of Information Technology

Maranatha Christian University
Bandung, Indonesia

oscar.karnalim@gmail.com

Abstract— Despite the fact that keyphrase is widely used as a
brief summary to represent documents, most keyphrase
extraction is only focused on arbitrary text. However, many
document types have specific behavior which require particular
pre-processing in order to extract keyphrases. In software
domain, keyphrases can only be extracted by utilizing reverse-
engineering approach and applying several conversion rules.
This paper proposes a mechanism to extract software keyphrases
with domain-specific features. For our case study, our proposed
method is applied to Java Archive, a distributional form of Java
binaries. Besides pre-processing and conversion rules, our
method also utilizes the combination of supervised and
unsupervised keyphrase extraction approach to exploit the
benefits of both approaches. Furthermore, in order to extract
keyphrase pattern more accurately, software-related features are
also incorporated besides standard keyphrase extraction
features. These features are software structure, software-related
natural language text, and software term association. Based on
overall evaluation, our proposed method yields moderate R-
precision. Thus, our approach is quite considerable to be applied
for extracting software keyphrase.

Keywords—keyphrase extraction; software; domain-specific
features; Java Archive

I. INTRODUCTION
Keyphrase is widely used as a brief summary to represent

documents [1]. They help readers rapidly understand document
context without the need to know the entire document. In
software domain, keyphrase is often featured in software portal
such as Maven repository [2] and NuGet [3]. Each software is
tagged with one or more keyphrase(s) in order to provide prior
knowledge about the software. For example, ANTLR will be
tagged by “compiler” and “parser” keyphrases due to its
functionality. However, keyphrase is only found when a
software is listed on a particular software portal. In fact, most
software is not listed on software portal and determining
keyphrase for these software may be a tedious task. Human
tagger is required to know the software subject even though
software content cannot be read directly. Thus, automatic
keyphrase extraction for software domain is highly desirable.

There has been various works about keyphrase extraction
which primarily focused on arbitrary text. Most of them can be
classified into two approaches: supervised and unsupervised
approach [4, 5]. In supervised approach, each keyphrase
candidate is fed to a trained classifier and resulted keyphrases
are fully-determined by classification algorithms. On the other

hand, unsupervised approach ranks keyphrase candidates based
on their importance and N candidates with the highest score
will be selected as keyphrases. Based on their respective
mechanism, supervised approach is more beneficial to be
conducted when keyphrase characteristics are still hidden.
However, since classification result are not comparable,
unsupervised approach is more desirable when the resulted
keyphrases are limited and should be the most relevant ones.
Determining the most relevant keyphrases among all
keyphrases requires comparison between each keyphrase based
on its relevancy.

Since both approaches have their unique benefits which
complements to each other, this paper proposes a combination
of supervised and unsupervised approach for extracting
software keyphrases. Keyphrase importance is still comparable
while hidden keyphrase pattern can be detected automatically
through learning mechanism. Several software-specific features
are also involved to improve the effectiveness of our proposed
method. These features are software structure, software-related
natural language text, and software term association.
Furthermore, since software content cannot be read directly, an
additional pre-processing for converting binary format to
readable well-formed sentences is also proposed. For our initial
step, pre-processing is focused on Java Archive, a
distributional form of Java binaries that can be used either as
stand-alone program or library. Yet, our approach can also be
applied to other software type as long as it yields similar
extracted features.

II. RELATED WORKS
Keyphrase extraction is a task to determine which phrases

are the most important and the most representative from
document body [6]. This task is typically split into two phases
which are selecting keyphrase candidates and determining
correct keyphrases [5]. Selecting keyphrase candidates is
conducted using several heuristic rules such as: 1) removing
stop words; 2) allowing only phrases with particular part-of-
speech tags; 3) extracting n-grams, and 4) filtering only high-
frequency phrases. On the other hand, determining correct
keyphrases can be conducted using either supervised or
unsupervised approach. Supervised approach relies on a trained
classifier to determine keyphrases whereas unsupervised
approach selects the most important candidates as keyphrases
based on several assumptions.

2016 International Conference on Advanced Computing and Applications

978-1-5090-6144-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ACOMP.2016.9

43

2016 International Conference on Advanced Computing and Applications

978-1-5090-6144-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ACOMP.2016.9

43

2016 International Conference on Advanced Computing and Applications

978-1-5090-6144-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ACOMP.2016.9

43

Various learning algorithm has been conducted in
supervised approach such as naive bayes [1, 7], decision tree
[6], neural network [8], and support vector machines [9].
However, since learning algorithm is heavily dependent with
instance features, proper instance features are more crucial to
be considered than the learning algorithm itself. Even the best
learning algorithm will yield low accuracy if its instance
features are not properly defined. Instance features are
commonly classified into four categories which are: statistical,
structural, syntactic, and external resource-based features.
Among these features, external resource-based features are the
only features that involve resource other than training data.

On the contrary, unsupervised approach consider keyphrase
extraction as a ranking problem instead of classification task
[4]. Keyphrase candidates are ranked based on their importance
and Top-N candidates will be selected as keyphrases. Yet, the
definition of importance varies based on several assumptions.
This includes classic IR ranking (e.g. TFIDF), graph-based
ranking [10], topic-based clustering [11], simultaneous learning
[12], and language modeling [13].

In this paper, supervised and unsupervised approach are
combined so that keyphrase importance is comparable to each
other while hidden keyphrase pattern still can be learned
automatically. This combination is conducted since software
keyphrase characteristics may be vary between software type
but its result should still be limited at a certain number. All
keyphrase candidates are extracted from software using
reverse-engineering approach, selected with particular
heuristics, queued based on their importance, and fed to a
classifier until N keyphrases are classified. Furthermore,
several software-specific features are implicitly involved on
these phases: Software structure is utilized on pre-processing
and candidate classification; Software-related natural language
text is utilized on candidate selection, ranking, and
classification; and software term association is utilized for
candidate ranking. The two latter features are based on noun
phrases extracted from 14.433 GitHub html files. These html
files are scraped from 16.000 links at the beginning of GitHub
Java Corpus project list [14] where remained 1.567 links are
not accessible. For convenience, these 14.433 GitHub html
files are referred as GitHub html files on the rest of this paper.

III. METHODOLOGY
Proposed software keyphrase extraction consists of four

phases: 1) document body extraction; 2) keyphrase candidate
selection, 3) keyphrase ranking; and 4) keyphrase
classification. Among these phases, document body extraction
is the only phase that is highly-related with software structure.
This phase should be modified when target software structure
is changed or extended. Moreover, the combination of
supervised and unsupervised approach is conducted on the last
two phases. Unsupervised approach is conducted on keyphrase
ranking whereas the supervised one is conducted on keyphrase
classification. For each software, our proposed approach is
expected to extract the most representative keyphrases based
on software functionality. For example, extracted keyphrases
from MySQL connector should be “database” and “SQL
driver”. Both terms are relevant with MySQL connector
functionality which aim to manipulate SQL database.

A. Document Body Extraction

This phase is responsible to extract all textual information
from target software and convert it into sentences. Yet, since
extraction can only be conducted when software structure is
known, our approach is focused on Java Archive structure as a
case study. For each Java Archive (JAR), our approach extracts
textual information from five major parts: package name, class
name, field name, method name, and string literal in method
body (which is responsible for all text in program contents).
Each extracted text will be tokenized based on the combination
of natural language delimiter and Java naming rules. This
tokenization is adapted from previous research about JAR
search engine [15].

However, several additional rules are also applied in order
to form well-formed sentences from the extracted text. For
each method name, a dummy token “I” will be concatenated at
the beginning of extracted tokens. This rule is conducted based
on an assumption that method name is always started with a
verb and a well-formed sentence is typically started with a
noun. Thus, for each string literal in method body, all string
literals collected within a method body will be concatenated as
a paragraph before tokenized where each newline will be
replaced with a full stop mark (.). This rule is associated with
two assumptions which are: 1) Sentences in method body is
commonly split into several string literals due to programming
behavior and variable usage; 2) Full-stop mark is commonly
replaced with newline in string literal that represents software
output.

B. Keyphrase Candidate Selection

In order to reduce the workload of keyphrase ranking and
classification, not all phrases are taken as keyphrase
candidates. Keyphrase candidates are selected with several
heuristics which are:

a) Keyphrase candidate should be a noun phrase with
phrase length lower or equal with 4 words. Noun
phrase identification is adopted from Sarkar et al [8]
with an additional rule to treat undefined token and
foreign word as a noun. Proposed regular expression
for noun phrase identification can be seen in (1) which
acronyms are based on Penn Treebank part-of-speech
notation, Part-of-speech of each token is determined
with Stamford log-linear part-of-speech tagger [16].

��������		�		
�		������������� (1)

b) Keyphrase candidate should not contain stop words as
its keyphrase member. This heuristic is inspired from
Frank et al keyphrase selection [7] but applied in Java
Archive instead of arbitrary text. Stop words for Java
Archive are taken from our previous research [15].

c) Each token in keyphrase candidate should contain at
least 3 characters. This heuristic is inspired from early
IR system that removes these kind of terms for
indexing [17]. Furthermore, it is also strengthened by
our finding in manual observation that short-sized
term is seldom occurred on relevant keyphrase.

d) Keyphrase candidate should be listed on software-
related natural language text with an assumption that

444444

natural language text only contains well-formed noun
phrases. This heuristic is utilized to exclude over-
technical identifier names from keyphrase candidate
list. Software-related natural language text is taken
from GitHub html files.

C. Keyphrase Ranking

In this phase, keyphrase candidates will be ranked based on
their importance and stored on a list in descending order. To
measure candidate importance, our approach utilizes a scoring
function in (2) that is extended from Frank et al TFIDF scoring
[7]. TFIDF is selected as a baseline for our ranking function
since it offers very robust performance across different dataset
[4]. TFIDF in our approach is extended with an assumption
that keyphrase should be the most related noun phrase toward
other document noun phrases. This rule is applied by summing
all relatedness score between the selected candidate with other
noun phrases on the given document. score(t,D) stands for the
score of a noun phrase t in document D. tf(t) represents term
frequency of noun phrase t, df(t) represents document
frequency that contain noun phrase t, N represents the number
of documents in collection, and rel(t,td) represents the
relatedness score of noun phrase t and td.

��������������������������������������� � !�"� "#�$%�&�' ��(2)

However, since the semantic relation in software domain
may be different with standard natural language domain, our
approach incorporates software-related natural language text as
a basis of our relatedness measurement. Relatedness is
measured with asymmetric noun phrase association extracted
from GitHub html files. Asymmetric association is utilized
instead of symmetric one based on following reasons: 1)
keyphrase should be a noun phrase that have high relatedness
degree with all other noun phrases but not necessarily vice
versa; and 2) equal-symmetric association is rarely occurred in
real-world noun phrase relatedness. Noun phrase relatedness
equation can be seen in (3) which is adapted from simple
conditional probability. df(t,td) is the number of documents that
contain noun phrase t and td whereas df(t) is the number of
documents that contain noun phrase t.

������������
%(�$�$%�

)*�+�
�����������������������������������(3)

D. Keyphrase Classification

After ranked and stored on a list, each keyphrase candidate
will be popped out from the beginning of the list and fed to a
classifier until N keyphrases are selected. Our approach utilizes
a classifier called logistic regression that is implemented by
WEKA [18]. Logistic regression is a discriminative classifier
that learn function P(Y|X) in the case where Y is discrete-
valued, and X = (X1 ...Xni) is any vector containing discrete or
continuous variables [19]. We prefer discriminative classifier
to generative one since it tends lower asymptotic error while
sufficient training data exist [20]. Moreover, logistic regression
is selected due to its simplicity to handle binary-valued target
class. As we know, our classification task is only required to
classify whether a candidate is a keyphrase or not. Other
discriminative approaches may be more inefficient due to their
complexity.

When utilizing instance features, our approach incorporates
three feature categories suggested by Hasan & Ng [5]. These
categories include statistical, structural, and external resource-
based feature. According to Hasan & Ng, syntactic feature
should be excluded due the fact that it is not useful in the
presence of other categories. The detail of proposed instance
features can be seen in Table I. Statistical features involved in
this research are standard features for keyphrase extraction
whereas structural and external resource-based features are
software-specific features. Software-specific features are
expected to improve the accuracy of keyphrase classification.

TABLE I. INSTANCE FEATURES

ID Feature Type

TF Term frequency

Statistical

IDF Inverse document frequency

PDD Phrase distance in document

PDS Phrase distance in sentence

PL Phrase length

WC Word count

SP Software-based structural position Structural

TFNL Term frequency in software-related
natural language text External

resource-based IDFNL Inverse document frequency in
software-related natural language text

Statistical features consist of term frequency (TF), inverse
document frequency (IDF), phrase distance in document,
phrase distance in sentence, phrase length, and word count. The
first three features are inspired from Frank et al features [7] but
differ in how TF and IDF are represented. As suggested by
Hulth [21], TF and IDF are split as two separate features
instead of merged as one. Phrase distance is measured by the
number of terms that occur before the first occurrence of the
target phrase. However, to avoid misleading pattern, phrase
distance is normalized based on their respective location
length. Phrase distance in sentence is measured locally within a
sentence whereas phrase distance in document is measured
globally on a document. Besides occurrence-based statistical
features, two lexical-based features are also involved. These
features are phrase length and word count. Phrase length
represents keyphrase candidate string size whereas word count
represents the number of word contained on that keyphrase
candidate.

Since structural features are highly related with software
domain, our approach utilizes Java Archive structure as a case
study. Five major parts which have been described in document
body extraction are utilized as structural location. These parts
include package name, class name, field name, method name,
and string literal in method body. However, instead of storing
structural location as a single multi-valued feature, these
structures are combined with occurrence-based statistical
features. Each occurrence-based statistical feature is split into
five sub-features based on its structural location. By conducting
this combination, we have 22 features so far (5 structural
component * 4 occurrence-based statistical features + 2 lexical
statistical features). Lexical statistical features are not

454545

combined with structural location since these features are not
affected with software structure.

External resource-based features involved in this approach
assume that software keyphrases should commonly occur in
software-related natural language text. In our case, software-
related natural language text is based on GitHub html files and
keyphrase occurrence will be calculated using term frequency
and inverse document frequency. With these two additional
features, our proposed instance features consist of 24 features
in total. These features are expected to be declarative enough
for classifying keyphrases.

IV. EVALUATION
A. Evaluation Dataset

Since there is no publicly available dataset that fit our
needs, 107 Java Archives (JAR) are collected with Google
search engine, annotated, and treated as our dataset. To avoid
misleading result, our dataset only consists of JARs that is
listed on their own websites. JARs that have their own websites
are assumed to be well-developed and following proper
software structure and naming rules. Our dataset is split into
two categories which are 55 standalone JARs and 52
component-based JARs. Standalone JAR is a JAR that can be
utilized without relying on the other JAR whereas component-
based JAR can only be utilized with the existence of other
JARs.

Relevant keyphrases on each JAR are manually assigned by
the author of this paper wherein each relevant keyphrase is
selected from JAR terms. This keyphrase assignment yields
485 relevant keyphrases for 107 JARs. Furthermore, assigned
keyphrase reliability is also validated with an inter-rater
agreement called Fleiss' kappa [22]. Fleiss' kappa is conducted
to 7 CS undergraduate students that are quite familiar with
software-related terms, keyphrase, and keyword-based
searching. These students are asked to check each assigned
keyphrases and judge its relevancy with a boolean value (true
means relevant and false means irrelevant). Based on Fleiss’
kappa statistic of student agreement, our assigned relevant
keyphrases are reliable since it yields 89,81% of agreement.
Thus, these assigned keyphrases are considered valid to be
used in our dataset.

B. Keyphrase Approximate Matching

Despite keyphrase extraction can be evaluated based on
how many relevant keyphrases are retrieved by the system,
exact match between retrieved and relevant keyphrases is
overly strict condition [5]. Several retrieved keyphrases may be
related to relevant keyphrases but not exactly in same lexical
form (e.g. “Java Archives” and “Java Archive”). Moreover,
retrieved keyphrases may be just a sub-phrase or super-phrase
of relevant keyphrases (e.g. “Java Archive” and “System-
related Java Archive”). These matching problems are caused
by linguistic phenomena [23] that commonly occurs in the
natural language.

In order to overcome these problems, our proposed method
is evaluated with approximate matching instead of exact
matching. The details of approximate keyphrase matching
procedure can be seen in Figure 1. Generally, this procedure is

split into three sub-procedures which are morphological,
partial, and normalized symmetric association matching.
Morphological matching handles exact match and any
morphological variations that can be solved with stemming;
Partial matching handles matching problem when retrieved
keyphrase is a sub-phrase or super-phrase of relevant
keyphrase; and normalized symmetric association matching
handles the rest of linguistic phenomena based on mutual
information.

Figure 1. Keyphrase Matching

Partial matching is measured with the longest common sub-
phrase (LCS) between retrieved and relevant keyphrase.
However, since both keyphrases are noun phrase which main
term is typically placed at the end of the phrase, selected LCS
should share similar last term with both keyphrases (e.g. LCS
“bytecode” shares similar last term with “java bytecode” and
“compiler bytecode”). Partial matching between two
keyphrases will be measured with (4). rt and rl are retrieved
and relevant keyphrase respectively, LCS(rt,rl) is the word
count of the longest common sub-phrase shared by both
keyphrases, size(rt) is the word count of retrieved keyphrase,
and size(rl) is the word count of relevant keyphrase. The
bottom part of the equation is conducted to normalize matching
result as percentage based on maximum similarity. This
percentage result will represent the matching degree between
retrieved and relevant keyphrase.

,-��.-�/0-��1���������
234�5$�56�

789��:8;<�=+��:8;<�=>��
�����������������������(4)

Normalized symmetric association matching is calculated
based on mutual information, a popular symmetric association
measurement [17]. Two keyphrases are strongly associated
with each other if they always co-occur in similar documents
within natural language corpus. GitHub html files are utilized
as our natural language corpus and the result of mutual
information is normalized as a percentage in order to represent
the degree of keyphrase relatedness. Normalized mutual
information utilized in this research can be seen in (5). df(rt,rl)
is the number of documents that contain retrieved and relevant

464646

keyphrase whereas df(rt) and df(rl) are the number of
documents that contain keyphrase rt and rl respectively.
Multiplication of df(rt,rl) on the upper part of this equation is
conducted to normalize its result as percentage so that two
mutually associated keyphrases will yield 100% match as its
result whereas two unassociated keyphrases will yield zero
result.

?��0-�.@��/AB����������
%(�5$�56�C%(�5$�56�

)*�=+�C�)*�=>�
�������������������(5)

C. Evaluation Schema

The effectiveness of keyphrase extraction is evaluated with
R-precision based on given dataset. R-precision calculates the
precision based on Top-R retrieved keyphrases for each
document (software) wherein R represents the number of actual
relevant keyphrases. For example, if a software has 3 relevant
keyphrases and 2 of them are in Top-3 retrieved keyphrases, its
R-precision will be 2/3 = 0.66 (66%). R-precision is selected as
evaluation measurement instead of standard precision and
recall based on two reasons: 1) The number of relevant
keyphrases for each software in our dataset are vary. Thus,
calculating precision and recall at a particular threshold may
yield biased result; and 2) Keyphrase extraction is commonly
focused only on top-ranked keyphrases. Therefore, utilizing
larger threshold for calculating precision and recall may also be
biased. Keyphrase approximate matching is also incorporated
on R-precision to handle linguistic phenomena between
retrieved and relevant keyphrases.

Since each keyphrase can only be compared once when
calculating R-precision, comparison pairs will be selected
based on following steps: 1) all retrieved-relevant pairs are
generated based on retrieved and relevant keyphrases for the
given software; 2) all pairs are sorted based on its approximate
matching in descending order and; 3) each pair which
member(s) is already a member of higher approximate
matching pair is removed. Afterwards, the remaining pairs will
be utilized for calculating R-precision. This selection
mechanism assures that each keyphrase can only be compared
once on remaining pairs and selected pairs will yield the
highest approximate matching degree among all possible
comparison pairs.

D. Evaluating Keyphrase Candidate Selection Heuristics

Since the main goal of candidate selection is to remove as
many as possible keyphrase candidates without reducing
overall effectiveness, the number of removed keyphrase
candidates should also be considered when evaluating each
candidate selection heuristic. A heuristic is considered as a
‘good’ heuristic iff it removes many keyphrase candidates
without reducing its overall effectiveness. Furthermore, several
potential heuristics beside proposed heuristics are also
evaluated in this paper for comparison purpose. These
heuristics are based on related works and several assumptions
toward our keyphrase extraction. These approaches are
excluded from our methodology since they reduce overall
effectiveness as a tradeoff of removing many keyphrase
candidates.

Evaluation result of these heuristics can be seen in Table II
wherein the ‘good’ heuristics are marked with blue color.

These evaluations are conducted under standard TFIDF
keyphrase ranking and incorporate all instance features for
keyphrase classification. However, due to the fact that most
candidate selection restricts its candidates as noun phrases
which contain no stop words, the first two heuristics from our
approach (noun phrase constraint and no-stop-word constraint)
are assumed to be ‘good’ heuristics and excluded from our
evaluation. Instead, these features are utilized as default
baseline for evaluating the effectiveness of each heuristic. As
seen in Table II, heuristics used in our methodology (H2 and
H3) are considered as ‘good’ heuristics. Both of them remove
many keyphrase candidates without lowering R-precision.
These heuristics even improve R-precision by removing
several false positive keyphrases. This result strengthens the
fact that short-sized term is seldom occurred on relevant
keyphrase and relevant keyphrase is typically a well-formed
noun phrase.

TABLE II. KEYPHRASE CANDIDATE SELECTION HEURISTICS

ID Candidate Selection
Heuristics

R-precision Removed
Keyphrase
Candidates

H1 Default 28.945% 0%

H2 Minimum 3 characters per
term in phrase 29.999% 10.538%

H3
Exclude phrase that is not
listed on software-related
natural language text

29.452% 44.907%

H4
Exclude shorter phrase which
n-grams are overlapped with
longer phrase(s)

13.537% 46.305%

H5 Exclude phrase which occurs
only once in document 28.479% 49.812%

H6
Only select phrases which
normalized TF is in range of
normalized keyphrase TF

28.759% 1.043%

H7 H2 + H3 29.346% 55.185%

H4, H5, and H6 are potential heuristics which are evaluated
for comparison purpose. H4 assumes that longer keyphrase
may be more preferable as a keyphrase candidate due to its
more-specific meaning. However, this heuristic lower R-
precision significantly since many relevant keyphrases are not
always the most specific phrase on the document. H5 is
inspired from Frank et al research [7] which removes all
candidates that only occurs once in a document. Despite of its
huge amount of removed keyphrase candidates, this heuristic is
not suitable on software context. Several keyphrases only occur
once in software due to programming concept about code
reusability. On the contrary, since this heuristic only reduces a
small amount of overall effectiveness as a tradeoff, this
heuristic may be potential to be utilized on dataset with many
large-sized software. H6 assumes that relevant keyphrases
should have a particular TF pattern toward their respective
document noun phrases. Keyphrase candidates are restricted to
all candidates which TF is in range of keyphrase TF. Yet,
normalization is also incorporated for calculating TF to avoid
biased result. For example, if a noun phrase “bytecode” occurs
5 times on a document that consists of 10 noun phrases, it can
be concluded that normalized TF (NTF) of “bytecode” is 5/10
= 0.5 (50%). The statistic of all NTF from our relevant

474747

keyphrases can be seen in Figure 2. Horizontal axis represents
frequency-ordered list of keyphrases whereas vertical axis
represents NTF. From this statistic, the boundary of keyphrase
NTF can be deduced which are 0.143% as upper bound and
5.846E-06% as lower bound. Unfortunately, many irrelevant
keyphrases are also appeared on that boundary range. Thus, H6
have no significant impact toward removed keyphrase
candidates. Additionally, H6 also reduces R-precision since
NTF of several approximate-matched keyphrases are out of
keyphrase range. Based on Figure 2, it can be concluded that
keyphrases does not always entailed from most frequent noun
phrases. Most keyphrases even have low TF on their respective
documents.

Figure 2. Keyphrase normalized TF based on their respective JAR

H7 is conducted to see the impact of combined ‘good’
heuristics (H2+H3). Although its R-precision improvement is
lower than H2 and H3, this combination is still considerable
since this heuristic removes the largest amount of keyphrase
candidates among all evaluated heuristics without lowering R-
precision.

E. Evaluating Keyphrase Candidate Ranking

Keyphrase candidate ranking is evaluated by comparing our
proposed ranking with other extended TFIDF ranking functions
based on R-precision. Our proposed ranking is considered as a
good ranking function iff it outperforms other ranking
functions. For environment baseline, all ranking functions are
conducted with H7 candidate selection heuristic and candidate
classification that utilize all instance features. The detail of all
evaluated ranking functions can be seen on Table III. R2, R3,
and R4 are evaluated for comparison purpose whereas R5 is
our selected candidate ranking function. R2-R5 are conducted
by utilizing GitHub html files as external resource.

TABLE III. RANKING FUNCTIONS AND ITS ASSUMPTIONS

ID Ranking Schemes Assumption

R1 Standard TFIDF -

R2 TFIDF * External TFIDF
External TFIDF may strengthen
the score of natural language
keyphrases

R3 TF * External IDF
The replacement of IDF with
EIDF may yield more consistent
IDF score

R4

TFIDF * the sum of
symmetric term
association between
selected keyphrases with
other noun phrases

Keyphrases should be highly-
related with other noun phrases
in JAR since they aim to
describe similar generic
functionality of the given JAR

ID Ranking Schemes Assumption

R5

TFIDF * the sum of
asymmetric term
association between
selected keyphrases with
other noun phrases

Similar with R4 except that it
assumes relatedness between
keyphrases and other noun
phrase is asymmetric instead of
symmetric relation.

R-precision for each ranking function can be seen in Figure
3. External TFIDF is incorporated in R2 by multiplying
internal TFIDF with external TFIDF. This approach yields
lower R-precision than standard TFIDF since not all
keyphrases are guaranteed to have high TFIDF score on both
domains (internal and external resource). Most of them only
have high internal TFIDF score. R3 assumes that IDF may be
more accurate when extracted from software-related natural
language instead of the software itself. However, it yields
lower R-precision since IDF pattern on both domains are quite
different. R4 is quite similar with our approach (R5) except that
R4 utilize symmetric term association instead of asymmetric
one. R4 incorporates mutual information as its symmetric term
association. Yet, since keyphrases should not related to other
noun phrases in symmetric manner, this approach still yields
lower R-precision than standard TFIDF. R5 is our proposed
ranking function which yields the highest overall effectiveness
among other ranking schemes. With this fact, our approach is
proved to be the most effective approach. Moreover, it can also
be concluded that ranking function for software keyphrase
extraction should involve relatedness between keyphrase and
other noun phrases asymmetrically.

Figure 3. R-precision of all ranking functions

F. Evaluating Instance Features

In order to prove the effectiveness of each instance feature,
these features are mapped into several schemes and compared
with default scheme. A feature is considered as a positive-
impact feature iff its generated scheme yields higher accuracy
than the default one. Generated scheme is the combination of
evaluated instance feature with default scheme features.
Default scheme consists of two features which are TFIDF and
phrase location in document (PDD). These features are adapted
from Frank et al features [7] and assumed as positive-impact
features due to their frequent entanglement in many keyphrase
extraction mechanisms. Thus, instance features evaluated in
this section are PDS, PL, WC, SP, and external TFIDF (TFNL
+ IDFNL). Additionally, the impact of split TFIDF is also
evaluated in this section.

484848

Despite most instance features can be mapped into a
scheme by just combining selected feature with default
features, several features can only be mapped with exclusive
mechanism due to its behavior. Generating a scheme for split
TFIDF can only be conducted by replacing default TFIDF
feature with TF and IDF (D+TF+IDF-TFIDF) whereas
structural features require default features to be split based on
its respective structural position (D U SP).

Each scheme is evaluated using 10-fold cross-validation
with WEKA based on our keyphrase dataset. However, since
the number of irrelevant keyphrases on each software tends to
be greatly higher than the number of relevant ones, irrelevant
keyphrases are limited to unigram, bigram, trigram, and
quartogram noun phrases with the highest TF. This selection
mechanism is conducted to gain balanced keyphrase dataset
(485 relevant keyphrases and 402 irrelevant keyphrases).

Evaluation result of each scheme can be seen in Figure 4. D
represent default scheme, All represents a scheme that include
all features, and the other acronyms represent instance feature
which detail can be seen in Table I. Since all non-default
schemes yield higher accuracy than default scheme, it can be
concluded that all instance features involved on our learning
model are positive-impact features. This conclusion is also
strengthened with the fact that combining all instance features
yields the highest accuracy rate (83.99%). Keyphrase word
count (WC) is the most impactful features because most
keyphrases consists of two or three words whereas phrase
distance in sentence (PDS) is the least impactful ones since its
pattern is quite similar with default scheme’s phrase distance in
document (PDD).

Figure 4. Evaluation Result per Scheme

Besides evaluating each instance feature separately, the
impact of each instance feature for overall classification task is
also evaluated through logistic regression odd ratio. Odd ratio
for each feature on a particular target class indicates the impact
of that feature for classifying that target class. Odd ratios for
“keyphrase” target class can be seen in Figure 5. “keyphrase”
target class is greatly influenced with PDS from string literal in

method body (string_literal_in_method_PDS) since it yields
the highest odd ratio (3,4996). This result yields the fact that
most keyphrase can be found on string literal in method body
with a particular location pattern. On the other hand, WC yield
the lowest odd ratio for classifying “keyphrase” target class
(0,0229). Yet, since our classification task only involves two
target class, it can be concluded that WC is the most impactful
feature for determining the other target class (“not keyphrase”
target class) as its output. This result also strengthens the fact
that most keyphrases consists of two or three words.

Figure 5. Odd ratio for "Keyphrase" target class

G. Evaluating Dataset Characteristic

Since there are two kind of JAR in our dataset, the impact of
each JAR type is also evaluated under our proposed method.
For this purpose, three schemes are generated which involving
the whole dataset, only standalone JARs, and only component-
based JARs. Evaluation result of these schemes can be seen in
Figure 6. Scheme that involving only standalone JARs yields
the lowest R-precision (29.118%) whereas scheme that
involving only component-based JARs yields the highest one
(31.942%). This phenomenon is caused by the number of
keyphrase candidates for each dataset. Standalone JAR tends to
have more keyphrase candidates than component-based JAR
due to its larger size. This statement is consistent with Hasan &
Ng research that states the difficulty of keyphrase extraction is
increased proportionally with document length due to candidate
size [5]. When evaluated on the whole dataset, our proposed
method yields moderate R-precision which is 31.556%. This
precision is quite acceptable when compared with other
keyphrase extraction evaluation result [5].

V. CONCLUSIONS
In this paper, a software keyphrase extraction has been

494949

developed. Textual information from software are extracted
using reverse-engineering approach, selected with several
heuristics, ranked with extended TFIDF, and classified as
keyphrase based on logistic regression. We have evaluated
heuristics used in candidate selection, ranking function in
candidate ranking, and instance features in candidate
classification. All of them are proved to be effective based on
our evaluation. Additionally, software-related features
incorporated on our proposed method are also considered to be
quite effective despite of its moderate impact. From dataset
perspective, our software keyphrase extraction works well on
small-size software due to its limited keyphrase candidate.
However, our approach is still considerable to be applied on
large-size software since large-size software dataset only
reduces a small amount of R-precision.

Figure 6. R-precision based on Dataset

VI. FUTURE WORK
In next research, we will exploit more software textual

information by utilizing supplementary files that usually co-
exist with software (e.g. textual databases, configuration file,
and source code). These files should consist of several features
that may strengthen the keyphraseness of relevant keyphrases.
Additionally, we also intend to evaluate our approach on
various software files other than JAR (e.g. Windows
executable files). From system perspective, keyphrase
extraction proposed in this research will be incorporated to our
Java Archive search engine [15, 24, 25] so that each JAR
search result will be featured with relevant keyphrases. These
keyphrases are expected to give a generic description about the
given JAR so that user may choose their relevant JAR more
easily.

REFERENCES
[1] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin and C. G. Nevill-

Manning, "KEA: Practical automatic keyphrase extraction," in The
fourth ACM conference on Digital libraries, 1999.

[2] "Maven Repository," Apache, 2006. [Online]. Available:
http://mvnrepository.com/. [Accessed 28 2 2016].

[3] "NuGet Gallery," .NET Foundation, 2016. [Online]. Available:
https://www.nuget.org/.

[4] K. S. Hasan and V. Ng, "Conundrums in unsupervised keyphrase
extraction: making sense of the state-of-the-art," in The 23nd
International Conference of Computational Linguistics, 2010.

[5] K. S. Hasan and V. Ng, "Automatic Keyphrase Extraction: A Survey of
the State of the Art," in The 52nd Annual Meeting of the Association for
Computational Linguistics, 2014.

[6] P. Turney, " Learning Algorithms for Keyphrase Extraction,"
Information Retrieval, vol. 2, no. 4, pp. 303-336, 2000.

[7] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin and C. G. Nevill-
Manning, "Domain-specific Keyphrase Extraction," in 16th International
Joint Conference on Artificial Intelligence, 1999.

[8] K. Sarkar, M. Nasipuri and S. Ghose, "A New Approach to Keyphrase
Extraction Using Neural Nework," International Journal of Computer
Science, vol. 7, no. 2, 2010.

[9] P. Lopez and L. Romary, "Automatic key term extraction from scientific
article in GROBID," in 5th International Workshop on Semantic
Evaluation, 2010.

[10] R. Mihalcea and P. Tarau, "TextRank: Bringing order into texts," in
20014 Conference on Empirical Methods in Natural Language
Processing, 2004.

[11] L. Zhiyuan, W. Huang, Y. Zheng and M. Sun, "Automatic Keyphrase
Extraction via Topic Decomposition," in Empirical Methods in Natural
Language Processing, 2010.

[12] X. Wan, J. Yang and J. Xiao, "Towards an iterative Reinforcement
Approach for Simultaneous Document Summarization dan Keyword
Extraction," in 45th Annual Meeting of the Association of Computational
Linguistics, 2007.

[13] T. Tomokiyo and M. Hurst, "A Language Model Approach to Keyphrase
Extraction," in The ACL Workshop on Multiword Expressions, 2003.

[14] M. Allamanis and C. Sutton, "Mining Source Code Repositories at
Massive Scale using Language Modeling," in The 10th Working
Conference on Mining Software Repositories, 2013.

[15] O. Karnalim, "Java Archives Search Engine Using Byte Code as
Information Source," in International Conference on Data and Software
Engineering (ICODSE), Bandung, 2014.

[16] K. Toutanova, D. Klein, C. Manning and Y. Singer, "Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Network," in The North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2003.

[17] B. Croft, D. Metzler and T. Strohman, Search Engine : Information
Retrieval in Practice, Boston: Pearson Education .Inc, 2010.

[18] M. Hall, E. Frank, Holmes Geoffrey, B. Pfahringer, P. Reutemann and I.
H. Witten, "The WEKA Data Mining Software: An Update," SIGKDD
Explorations, vol. 11, no. 1, 2009.

[19] T. Mitchell, "Generative and Discriminative Classifiers: Naive Bayes and
Logistic Regression," 2015. [Online]. Available:
http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf.

[20] A. Ng and M. I. Jordan, "On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes," in Advances in
neural information processing systems 14, Massachuset Institute of
Technology, 2002, pp. 841-848.

[21] A. Hulth, "Improved automatic keyword extraction given more linguistic
knowledge," in The 2003 conference on Empirical methods in natural
language processing, Stroudsburg, 2013.

[22] J. L. Fleiss, "Measuring nominal scale agreement among many raters,"
Psychological Bulletin, vol. 76, p. 378–382, 1971.

[23] A. Polyvyanyy, "Evaluation of a novel information retrieval model:
eTVSM," in Master's thesis, Hasso Plattner Institut, 2007.

[24] O. Karnalim, "Extended Vector Space Model with Semantic Relatedness
on Java Archive Search Engine," Jurnal Teknik Informatika dan Sistem
Informasi (JuTISI), vol. 1, no. 2, pp. 111-122, 2015.

[25] O. Karnalim, "Improving Scalability of Java Archive Search Engine
through Recursion Conversion and Multithreading," CommIT
(Communication and Information Technology) Journal, vol. 10, no. 1,
pp. 15-26, 2016.

505050

