Proceedings

of 2017 IEEE 8th International Conference on
Software Engineering and Service Science

November 24-26, 2017
Beijing.China
China Hall of Science and Technology

Edited by:
Prof. Li WenZheng
Prof. M.SURENDRA PRASAD BABU
Prof. Lei Xiaohui

IEEE
PRESS

ICSESS 2017

Proceedings of

2017 IEEE 8th International Conference on
Software Engineering and Service Science

November 24-26, 2017
China Hall of Science and Technology
Beijing, China
Sponsors:
The Institute of Electrical and Electronics Engineers
IEEE Beijing Section

Edited by

Prof. Li Wenzheng
Prof.M. Surendra Prasad Babu
Prof. Lei Xiaohui

IEEE
> PRESS

Proceedings
2017 IEEE 8th International Conference on

Software Engineering and Service Science

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in
this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code
is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying,
reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes
Lane, Piscataway, NJ 08854. All rights reserved. Copyright ©2017 by IEEE.

Compliant PDF Files
1IEEE Catalog Number: CFP1732J-ART
ISBN: 978-1-5386-0497-7 2327-0594
Conference CD-ROM Version
IEEE Catalog Number: CFP1732]-CDR
ISBN: 978-1-5386-0496-0
Print Version
1IEEE Catalog Number: CFP1732]J-PRT
ISBN: 978-1-5386-4570-3 2327-0586

Publisher: Institute of Electrical and Electronics Engineers, Inc.

Printed in Beijing, China

Q'EEE International Conference on Software Engineering
and Service Science

IEEE ICSESS is an annual event focusing on state of the art the various aspects of
advances in Computer Science and Model Algorithm. Software Engineering and Service
Science. IEEE ISESS intended to tackle these challenges and will bring together
Researchers, engineers and practitioners working on the latest issues in Computer Science and
Information System. System Engineering and Algorithm . Software Engineering and
Service Science. The conference is soliciting state-of-the-art research papers in the

following areas of interest.

® Computer Science and Technology
Artificial Intelligence :
Computational Intelligence& Data Mining
Information Systems & Expert Systems
Pattern Recognition& Modeling Control
Systems
Embedded Systems Digital System and
Logic Design
High Performance Computing Parallel and
Distributed Computing
Robotics and Automation Computer-aided
Design/Manufacturing
Parallel Computing and Mobile Computing
Data Mining & Knowledge Discovery
Semantic web and intelligent web
RFID System and Application
Cloud Computing
Machine Learning and Neural Network

® Software Engineering
Requirements Engineering
Object-Oriented Technologies
Model-driven Architecture and Engineering
Re-engineering and Reverse Engineering
Software Architectures Design
Frameworks and Design Patterns
Web services, SOA and Grid Computing
Testing of Software Systems
the Integration of Technology and Business
Geographic Information System
Model Driven Engineering

Parallel/Distributed Systems

Program Comprehension and Visualization
Web Technologies and Information

Software Architectures for Real-time and
Embedded Systems

Software Architectures for Cloud-based
applications and Services

Functional validation and verification
techniques for Software Components and
Architectures

® Communication, Network and
Security
Wireless Communication and Mobile
Computing Computer Networks and Data
Communication
Data Encryption NGN, NGI, IPv6, Future
Internet
Mobile Communication, WIiMAX Wireless
Communication, Satellite Communication
Network Security, Management, Operation,
and Maintenance Optical Network, Packet
Transport Network
Security & Cryptography System Security
Computer Networks Computer Security
® Service Science & System
Engineering
Grid Computing for E-Business
System Engineering

Services Service-oriented Architectures

Business Supporting Systems & Business
Intelligence

E-Service Inteiligence

Decision Support System and Models
Diffusion of E-Commerce

Risk& Emergency Management Service

Conference Chairs

Prof.M. Surendra Prasad Babu,Andhra University, India

Prof. Menggi Zhou, Chairman of IEEE China Council, China

Prof Li Wenzheng, Beijing University of technology, China

Dr.Rong CHANG, IBM Academy of Technology, IBM Research, USA

Prof Eric Tsui,The Hong Kong Polytechnic University, China

Prof Gao Chao, Vaasa University of Applied Sciences, Finland

Prof Huang Jianging, University of International Business and Economics, China

Program Committee

Prof Li Wenzheng, Beijing University of Technology, China

Prof Ban Xiaoluan,The University of Science and Technology Beijing,China
Professor Robin G. Qiuto of Pennsylvania State University

Prof Wu Qishi, University of Memphis, USA

Prof Xing weiwei, Beijing Jiaotong University, China

Prof Zhao yanping,Beijing Insitute of Technology, China

Prof Li saozhi,Xiamen University ,China

Prof Tang Bingyong ,Donghua University,China

Prof Yang Gang,Xidian University ,China

Prof Li yan, Nanjing University,China

Prof Yan Jinxiao ,Communication University of China,China

Prof Liu Hongzhi,Beijing Technology and Business University, China

Prof Chen jin, University of International Business and Economics, China
Prof Joseph Manning, University College Cork, Ireland

Prof Huang Jianging, The University of International Business & Economics,China
Prof. Luo senlin, Beijing Institute of Technology,China

Prof Zuo baohe ,South China University, China

Prof Zhang zhenghe,China Agriculture University,China

Prof Liu huasong, Taiji Computer Corporation Limited,China

Prof Er. Brajesh Kumar Singh, FET, RBS College,India

Prof Padmavathamma Mokkala, Sri Venkateswara University, India

Prof Niuwenliang profsessor,Beijing Union University,China

Chair of Publication Committee

Prof. Menggi Zhou, Chairman of IEEE China Council, China

Conference Secretary

Mr Zhou June, Beijing Huake Institute of Information and Science

Session 1

001-RO10

002-P179

003-P197

004-P195

005-P013

006-P188

007-P209

008-P091

009-RO79

010-P120

Session 2

011-P157

012-P057

013-P036

014-P101

Table of Contents

Utilizing Cluster Quality in Hierarchical Clustering for Analogy-Based Software Effort
Estimation
Jack H.C. Wu,Jacky W. Keung

Open Innovation in Software Requirements Engineering: A Mapping Study
Huishi Yin,Dietmar Pfahl

Unconventional Service Engineering:Toward a New Paradigm of Service Engineering for
Empowering Senior Citizens in City Platform as a Service
Toshihiko Yamakami

Classification and Metrics for Replay Tools
Fangge Yan

SuperedgeRank Algorithm and Its Application for Core Technology Identification
Jianguo Xu, Mengjun Li, Jiang Jiang, Hanlin You

Performance Analysis of CDN-P2P Networks Based on Processer-Sharing Queues
Xiaofeng Zhang, Baoqun Yin

A Test Language for Avionics System
Yanfang Liu,Jianghua Lv, Wei Wang, Tao Li,Shilong Ma

Duplicate Short Text Detection Based on Word2vec
Jin Gao, Yahao He, Xiaoyan Zhang, Yamei Xia

Application of CART Decision Tree Combined with PCA Algorithm in Intrusion
Detection
Li Miao
A Performance Comparison of Two Versatile Frequency Transformation Approach in

Texture Image Retrieval

Sawet Somnugpong, Khumphicha Tantisantisom, Phrommate Verapan

Intrusion Detection for Engineering Vehicles under the Transmission Line Based on Deep
Learning

Chunjiang Yan, Chuang Wang,Juexiao Du,Yixuan Wang Hualin Fang Xuezhi Xiang Xinli
Guo

Detecting Injection vulnerabilities in Executable Codes with Concolic Execution

Maryam Mouzarani Babak Sadeghiyan, Mohammad Zolfaghari

An Abstract Method Linearization for Detecting Source Code Plagiarism in
Object-Oriented Environment

Oscar Karnalim

Critical Analysis of Feature Model Evolution
Sungwon Kang, Younghun Han, Hwi Ahn,Jihyun Lee

11

15

19

24

28

33

38

42

46

50

58

62

015-P098

016-P09%4

017-P129

018-P130

019-P132

020-P145

Session 3

021-P155

022-P161

023-P085

024-P154

025-P198

026-P009

027-P014

028-P189

029-R0O98

030-P228

Session 4

031-P048

Semantically Enriched Open API Service Descriptions in the Cloud
Nikolaos Mainas, Euripides G M. Petrakis,Stelios Sotiriadis

Performance Analysis of Ethereum Transactions in Private Blockchain

Sara Rouhani,Ralph Deters

Adaptive Life-Cycle Control System for Overhead Transmission Lines Using Forecasting
Models

Alexandra I. Khalyasmaa, Stanislav A. Eroshenko,Dimitar Bogdanov

Intelligent Model of Decision Support System of Distributed Generation Integration
Stanislav A. Evoshenko,Alexandra I. Khalyasmaa

Method of License Compliance of Open Source SoftwareGovernance

Ho Yeong Yun, Yong Joon Joe, Dong Myung Shin

Machine Learning for Predictive Maintenance of Industrial Machines using IoT Sensor Data
Ameeth Kanawaday, Aditya Sane

ECG based Authentication for Remote Patient Monitoring in IoT by Wavelets and Template
Matching
Abdul Rehman, Nazar Abbas Saqib, Syed Muhammad Danial, Syed Hassaan Ahmed

A View Model of AP1 Economy in City Platform as a Service
Toshihiko Yamakami

A Model-Driven Deployment Approach for Scaling Distributed Software Architectures on a
Cloud Computing Platform
Jeisson Vergara-Vargas, Henry Umaria-Acosta

EEG Signal Analysis of Passage Reading and Rapid Automatized Naming between Adults with
Dyslexia and Normal Controls
Harshani Perera, Mohd Fairuz Shiratuddin, Kok Wai Wong, Kelly Fullarton

Krill Herd Optimization Algorithm forCancer Feature Selection and Random Forest Technique
for Classification

R Ranjani Rani,D.Ramyachitra

Web Application for Automatic Code Generator Using a Structured Flowchart
Chanchai Supaartagorn

Web App Restructuring based on Shadow DOMs to Improve Maintainability
Jaewon Oh, Woo Hyun Ahn, Taegong Kim

Docker based Computation Off-loading for Video Game based Mobile VR Framework
Yunhee Kang, HoJung Kim, JungJoo Kang

Discovering Knowledge from Mobile Application Users for Usability Improvement: A Fuzzy
Association Rule Mining Approach
Md Alamgir Kabir,Omar A. M. Salem, Muaan Ur Rehman

An Leamning-based Fault-Tolerant Model for Real-time Applications on Clouds
Haoran Han, Weidong Bao, Xiaomin Zhu, Xiaosheng Feng

Automated Analysis of UML Activity Diagram using CPNs

66

70

75

79

83

87

91

95

99

104

109

114

118

123

126

130

134

An Abstract Method Linearization for Detecting
Source Code Plagiarism in Object-Oriented
Environment

Oscar Karnalim
Faculty of Information Technology
Maranatha Christian University
Bandung, Indonesia
oscar.karnalim@it.maranatha.edu

Abstract—Despite the fact that plagiarizing source code is a trivial
task for most CS students, detecting such unethical behavior
requires a considerable amount of effort. Thus, several plagiarism
detection systems were developed to handle such issue. This paper
extends Karnalim’s work, a low-level approach for detecting Java
source code plagiarism, by incorporating abstract method
linearization. Such extension is incorporated to enhance the
accuracy of low-level approach in term of detecting plagiarism in
object-oriented environment. According to our evaluation, which
was conducted based on 23 design-pattern source code pairs, our
extended low-level approach is more effective than state-of-the-art
and Karnalim’s approach. On the one hand, when compared to
state-of-the-art approach, our approach can generate less
coincidental similarities and provide more accurate result. On the
other hand, when compared to Karnalim’s approach, our
approach, at some extent, can generate higher similarity when
simple abstract method invocation is incorporated.

Keywords-abstract method linearization; low-level language;
source code plagiarism detection; object-oriented environment

l. INTRODUCTION

In Computer Science (CS) major, conducting plagiarism is a
trivial task since most students are familiar with copy-and-paste
technique. They could copy and plagiarize their colleague’s
work in no time. In addition, since most assignments are written
electronically in such major, most students could disguise their
unethical behavior without leaving a particular trace. As we
know, the modification of most electronic files would replace
the original one in exact position with no trace. In order to handle
such issue, numerous plagiarism detection systems are
developed where most of them are focused on programming
assignment plagiarism.

In term of detecting plagiarism in programming assignment,
most works are classified into two categories which are attribute-
and structure-based approach [1]. Attribute-based approach
detects plagiarism based on key properties from given source
codes whereas structure-based approach detects plagiarism
based on source code ordinal structure. According to several
works [2, 3], the latter one frequently outperforms the first
approach in term of its effectiveness. Such approach is more
resistible to handle high-level plagiarism attack since it
considers the structural order of compared source code.

This paper extends Karnalim’s work [4], a structure-based
approach for detecting source code plagiarism, with an
additional mechanism, namely abstract method linearization.
Such mechanism is intended to naively linearize the content of
abstract methods so that low-level approach could become more
accurate for detecting plagiarism in object-oriented
environment. Our proposed approach is then evaluated based on
23 design-pattern source codes with its respective anti-pattern as
its plagiarized code. Such dataset is assumed to represent source
codes that are implemented in complex object-oriented
environment.

Il. RELATED WORKS

When detecting source code plagiarism, structure-based
approach uses ordinal structure from source code to determine
similarity value. Such approach usually works by translating
source codes into their respective intermediate form and
compare such forms in pairwise manner through similarity
algorithm [1]. In general, there are three intermediate
representations which are frequently used in structure-based
approach. These representations are lexical token sequence [3],
compiler-based representation [5], or low-level codes [6, 7, 8, 4,
9]. Among these forms, low-level code, at some extent, is
claimed to be quite effective and efficient due to its token
compactness [9, 4]. It only contains semantic-preserving
instructions and most syntactic sugars are automatically
translated into its original form.

To the best of our knowledge, there are five works which
incorporated low-level codes for detecting source code
plagiarism. They are classified into two categories based on their
target programming languages. On the one hand, three of them
are focused on .NET programming language. It was initiated by
Juri¢i¢’s work [6] which detect plagiarism based on Levenstein
distance of Common Intermediate Language instructions. That
work was then followed by Juri¢i¢ et al [7] and Rabbani &
Karnalim [9] by replacing Levenstein distance with more-
sophisticated similarity measurement. On the other hand, two of
them are focused on Java programming language. It was
initiated by Ji et al’s work [8] which converts Java source code
into Bytecode and compare them through Adaptive Local
Alignment algorithm. Such work was then expanded by
Karnalim [4] by replacing similarity algorithm with RKGST and

incorporating supplementary mechanisms, such as recursion-
handling method linearization, instruction generalization, and
instruction interpretation.

In this paper, an expanded version of Karnalim’s work [4] is
presented for handling source code plagiarism in object-oriented
environment. Our work incorporates abstract method
linearization, a mechanism to naively detect the content of
abstract method without executing given code directly. Such
mechanism is expected to linearize abstract method based on its
implementer contents instead of replacing it with an empty
string during method linearization.

I1l. OVERVIEW OF LOW-LEVEL APPROACH

In general, our low-level approach, which is extended from
Karnalim’s work [4], works in threefold. Firstly, all target source
codes will be compiled into their respective low-level form. In
our case, all Java source code will be compiled into their
respective class files which contain bytecode instructions.
Secondly, generated class files are then extracted to readable
low-level token sequences. It is important to note that extraction
phase conducted in this work is expanded with abstract method
linearization. Finally, all generated low-level token sequences
will be compared to each other using local RKGST minimum
matching similarity with 2 as RKGST minimum matching
threshold. Such mechanism deducts similarity based on the
collective matched tokens from all method pairs, where the
pairing mechanism is based on method signature similarity.

Abstract method linearization intends to approximately
linearize abstract method content based on their respective
implementer methods. All tokens from implementer methods
will be concatenated and reconsidered as the content of given
abstract method. In such manner, the content of abstract method
is still able to be approximately predicted even though its
method is invoked through generalized-type variable. In term of
its implementation, abstract method linearization will be
conducted right before standard method linearization from
extraction phase in Karnalim’s work [4]. It is conducted into
three steps. Firstly, all class and interface relations would be
remodeled as a graph, where A - B represents that
class/interface A implements or inherits B. Secondly, all nodes
in generated graph are then sorted based on incoming edges in
ascending order through topological sort [10]. Finally, all
abstract methods for each node would be linearized sequentially,
started from node with the lowest number of incoming edges.

For more details about how our abstract method linearization
works, let see a case study with sample class structure given on
Figure 1. Initially, all class and interface relations are converted
into a graph and sorted in ascending order using topological sort.
This phase sorts classes and interfaces into ConcreteClassl,
ConcreteClass?, ConcreteClass3, ConcreteClass4,
ConcreteClass5, Interface?, AbstractClass2, Interfacel, and
AbstractClass1. Since the first five classes have no abstract
methods, we will start to discuss linearization process from the
6™ to the 9™ element. Firstly, all methods from Interface2 are
linearized based on ConcreteClass5 methods which have similar
method signature since ConcreteClass5 is the only implementer
of that interface. Both methods will yield exactly similar content
with its implementer method since such interface is only
implemented once. Secondly, AbstractClass2 has 2 abstract

methods which are fool and foo2. Each method is then
linearized by concatenating the content of similar method from
ConcreteClass2 and ConcreteClass3. In other words, each
abstract method from AbstractClass2 will have more tokens
since they combine the content of two implementer methods.
Thirdly, Interfacel’s foo3 is linearized based on the
concatenation of methods which have similar signature from
ConcreteClass4 and Interface2. It is important to note that foo3
on Interface2, which is required to linearize Interfacel’s foo3,
had been linearized in previous iteration. By using topological
sort, our approach guarantees that all required abstract methods
have been linearized before wused. Finally, fool in
AbstractClassl is linearized based on similar-signatured method
from ConcreteClassl and AbstractClass2. Even though
AbstractClass2 ‘s fool is abstract, its content has been linearized
before on previous iteration. Therefore, fool on AbstractClassl
could be linearized by simply concatenating the content of both
methods.

AbstractTass1

+fool () woid

Interfacel

+£003 ()

: void

ConcreteClass1

AbstractClass2

+fool () : void

+fool(): void
+foo2 () void

V#\

Y

Interface2

+foo3(): void
+fao4 () : void

Y

ConcreteClass4

ConcreteClass5

+foo3 () : void

+foo3 () : wvoid
+foo4 () : woid

ConcreteClass2

ConcreteClass3

+fool(): void
+foo2 () : void

+fool() : void
+foo2 () : void

Figure 1. Sample Class Structure

IV. EVALUATION

This evaluation is conducted to measure how far object-
oriented environment affects resulted similarity of low-level
approach. In order to do that, 23 design patterns, which were
defined by Gang of Four [11], are selected as our case study. For
each design pattern, original source code would be taken from
[12] whereas its plagiarized code would be generated by
removing such pattern on given code. In such manner, the
original and plagiarized code are only different in term of
incorporated design pattern. We do believe that the existence of
such pattern represents object-oriented environment since most
design patterns are formed by incorporating complex object-
oriented techniques. The detail of involved design patterns with
its unique ID, which will be used for convenient reference at the
rest of this paper, can be seen on Figure 2. These cases are sorted
per pattern category where case 1-5 refer to creational patterns;
case 6-16 refer to behavioral patterns; and case 17-23 refer to
structural patterns.

This evaluation incorporates 3 scenarios which are low-level
approach (LA), low-level approach without abstract method
linearization (LA-M), and standard lexical token approach
(SLT). Firstly, LA refers to our proposed mechanism, that is
featured with abstract method linearization. Secondly, LA-M
refers to our proposed mechanism without the existence of
abstract method linearization. This scenario will be used to
measure the impact of abstract method linearization by
comparing its result with LA. Finally, SLT refers to state-of-the-

art approach that converts source codes into lexical token
streams and compares them using RKGST algorithm with 2 as
its minimum matching threshold. This scenario will be used as a
baseline to measure the effectiveness improvement provided by
low-level approach.

1D Design 1D Design ID Design
Pattern Pattern Pattern
Ccol Abstract Factory | C09 Tterator C17 Adapter
C02 Builder Ccl0 Mediator CI8 Bridge
Co03 Factory Cl1 Memento C19 Composite
Co4 Prototype Cl2 Observer C20 Decorator
Cos Singleton C13 State C21 Facade
Co6 Chain of Cl4 Strategy c22 Flyweight
Responsibility
co7 Command Cl15 Template C23 Proxy
C08 Interpreter Clé Visitor

Figure 2. Evaluation Dataset with its Respective ID

Since low-level form is more compact than the source code
itself [4, 9], comparing the result of these scenarios based on
normalized similarity might be unfair. One mismatch token on
low-level approach may significantly lower its normalized
similarity due to its small token size. Thus, a measurement
without normalization, namely Inverse number of Mismatched
Token (IMT), is proposed. The detail of such measurement can
be seen in (1). As its name states, it is inversely proportional to
the number of Mismatched Token (MT). MT, which is adapted
from Karnalim’s evaluation scenario [4], is generated by
subtracting the number of involved tokens with the number of
matched tokens.

IMT(A) =1 * MT (1)

The detail of our evaluation result can be seen on Figure 3
where vertical axis represents IMT value for each case and
horizontal axis represents plagiarism cases in our evaluation
dataset. In general, SLT yielded the most fluctuated result when
compared to other approaches. It generates the highest IMT on
several cases while resulting the lowest one on the others. On
the other hand, the result of LA and LA-M are less fluctuated.
They generate narrower result range when compared to SLT.

Inverse Mismatched Token Generated from Evaluation Dataset

€01 C02 €03 CO4 COS CO6 CO7 CO8 CO9 C10 C11 C12 C13 €14 €15 €16 C17 C18 €19 €20 €21 €22 €23

A-M

Figure 3. Evaluation Result

According to Figure 3, the highest IMT, which is 0, is
occurred ten times where four of them were generated as LA
results; two of them were generated as LA-M results; and the
others were generated as SLT results. These cases yield high

IMT since incorporated plagiarism attacks on such cases are
perfectly matched with scenario characteristics. On the contrary,
the lowest IMT is generated by SLT when detecting similarity
on CO08 case. Such finding is natural since removing interpreter
pattern in C0O8 generates a significant modification in source
code level and all tokens involved on such modification were
considered as mismatched tokens by SLT.

LA has several major benefits when compared to SLT in
term of effectiveness. Firstly, LA generates less coincidental
similarities since such approach considers program context
when determining similarity. It only compares subsequences
from methods which share considerably similar signature and
excludes delimiter tokens from its comparison due to the nature
of low-level form characteristics. It is quite different with SLT
which treats the whole source code as a long sequence and
includes all delimiter tokens on its comparison. Similar
subsequences could be found anywhere without considering
given context and similarity result might be biased due to the
inclusion of delimiter tokens. Such benefit is deducted from
C02, C04, C06, C14, and C17 where SLT seems to outperform
LA. Secondly, LA result would be more semantically-related
since such approach only compares semantic-preserving tokens.
No delimiter tokens would be involved in low-level form since
they have been removed at compilation phase. Such benefit is
deducted from C09, C12, and C19 where LA outperforms SLT
due to less mismatched tokens. Thirdly, LA would be more
compatible for detecting student source code plagiarism since it
considers standard programming mechanisms such as method
invocation and abstract method. These mechanisms are
frequently used by students on programming task, especially in
object-oriented environment. Such benefit is deducted from C15
and C23 where SLT vyields lower IMT when compared to LA,
which, at some extent, considers such programming mechanism.
Finally, LA enables plagiarism detection to be measured
dynamically per method thanks to method pair mechanism. Such
phenomenon is beneficial in term of excluding more
mismatched tokens since minimum matching similarity could
dynamically replace tokens that act as a baseline for determining
similarity. In addition, since method pair mechanism is only
focused on method content similarity, class and attribute
modification are unavailing on such approaches. Such benefit is
deducted from C07, C08, C12, C13, C16, C18, C20, and C23
where SLT yields low IMT on these cases due to static minimum
mechanism.

Despite their benefits, LA has an additional drawback, which
is mainly caused by the compactness of low-level form. At some
points, it cannot detect similar short subsequence which can be
detected through SLT. This finding is natural since source code
tokens are less concise than low-level tokens. In low-level form,
several source code tokens are replaced with less tokens that
refer to the same semantic. Thus, when both SLT and LA
incorporate similar minimum matching threshold, SLT could
detect more matched tokens due to the longer representation of
source code tokens. Such drawback is deducted from C02 where
LA cannot generate higher IMT than SLT since the length of
several matched subsequences is lower than incorporated
RKGST minimum matching threshold, which is 2. At that case,
it is important to note that reducing such threshold to 1 is not a

solution since the number of false-positive tokens would be
increased.

Abstract method linearization yields adequate impact since
it enhances IMT on several cases while reducing IMT on other
cases. Such linearization is effective for handling abstract
method that only has one implementer. This benefit can be
explicitly seen on CO1, C03, and C09 where LA vyields higher
IMT than LA-M. However, such linearization is less effective
when handling abstract method with numerous implementers. It
typically generates more mismatched tokens than the matched
ones since it concatenates all possible linearization as method
content and only a small portion of them which are considered
as actual matches. This drawback can be explicitly seen on C08,
C15, C16, C18, and C23 where LA yields lower IMT than LA-
M.

Based on our manual observation toward evaluation dataset,
standard method linearization, which has been initially
developed by Karnalim [4], takes a significant role for
determining similarity in object-oriented environment. Most
cases incorporated method inlining and outlining when
generating the plagiarized code. Thus, without method
linearization, such cases would not be detected correctly since
numerous method content will be ignored during comparison
phase.

V. CONCLUSION

In this paper, a low-level approach, which is extended from
Karnalim’s work [4], is proposed. It incorporates abstract
method linearization to predict the content of abstract method by
concatenating all method contents from its respective
implementer(s). Based on our dataset, our low-level approach
outperforms state-of-the-art approach in term of its sensitivity.
It could generate less coincidental similarities and provide more
accurate result since it only considers semantic-preserving
tokens. Furthermore, such approach is more suitable to handle
student source code plagiarism since it considers several
programming concepts and detects similarity based on method
content instead of the whole tokens. Despite the benefits, our
approach suffers a drawback. It cannot detect several short
similar pairs which can be detected through standard lexical
token approach. Such issue is caused by the compactness of low-
level tokens where several source code tokens are compressed
into less tokens in low-level form. However, since the benefits
outweigh the drawback, we would argue that our approach is
quite promising to detect source code plagiarism in object-
oriented environment.

Abstract method linearization is proved to be considerably
effective for detecting plagiarism in object-oriented
environment, especially when the number of its implementer is
considerably small. It can generate method content of invoked
abstract method without directly executing the codes. Yet, it
would generate numerous mismatched tokens when given
abstract methods have been reimplemented many times.

For future work, our proposed method will be combined with
attribute-based approach so that it could detect source code

plagiarism in more-effective manner. In addition, we also intend
to evaluate our approach on real plagiarism cases that
incorporate object-oriented paradigm. We want to revalidate
whether our hypothesis about its effectiveness is also applied to
real plagiarism cases or not.

VI. THREATS TO VALIDITY

It is important to note that evaluation dataset incorporated in
our work does not represent all possible implementations of 23
design patterns mentioned by Gamma et al [11]. Such evaluation
dataset only represents a subset of them. Thus, the results
provided in this work is not guaranteed to represent the impact
of our approach for given design patterns in general. We only
used such dataset as a representation of source code in complex
object-oriented environment. In addition, due to various object-
oriented techniques, our findings cannot be generalized to all
possible combinations of object-oriented techniques. We tried to
mitigate this issue by incorporating various design patterns as
plagiarism attacks. Yet, it might only represent a small subset of
possible combined techniques in object-oriented environment.

REFERENCES

[1] Z. A. Al-Khanjari, J. A. Fiadhi, R. A. Al-Hinai and N. S. Kutti,
"PlagDetect: a Java programming plagiarism detection tool," in ACM
Inroads, New York, ACM, 2010, pp. 66-71.

[2] L. Prechelt, G. Malpohl and M. Philippsen, "Finding plagiarisms among
a set of programs with JPlag," Journal of Universal Computer Science,
vol. 8, no. 11, 2002.

[3] Z. Djuric and D. Gasevic, "A Source Code Similarity System for
Plagiarism Detection," The Computer Journal, vol. 55, 2012.

[4] O. Karnalim, "Detecting Source Code Plagiarism on Introductory
Programming Course Assignments Using a Bytecode Approach," in The
10th International Conference on Information & Communication
Technology and Systems (ICTS), Surabaya, 2016.

[5] M. Chilowicz, E. Duris and G. Roussel, "Syntax tree fingerprinting for
source code similarity detection," in IEEE 17th International Conference
on Program Comprehension, Vancouver, 2009.

[6] V. Juri¢i¢, "Detecting source code similarity using low-level languages,"
in 33rd International Conference on Information Technology Interfaces,
Dubrovnik, 2011.

[7]1 V. Juricic, T. Juricand M. Tkalec, "Performance evaluation of plagiarism
detection method based on the intermediate language,” INFuture2011:
"Information Sciences and e-Society", 2011.

[8] J.-H.Ji, G. Woo and H.-G. Cho, "A Plagiarism Detection Technique for
Java Program Using Bytecode Analysis,” in ICCIT '08. Third
International Conference on Convergence and Hybrid Information
Technology, Busan, 2008.

[9] F. S. Rabbani and O. Karnalim, "Detecting Source Code Plagiarism
on .NET Programming Languages using Low-level Representation and
Adaptive Local Alignment," Journal of Information and Organizational
Sciences, vol. 41, no. 1, 2017.

[10] R. Sedgewick and K. Wayne, Algorithms, 4th Edition, Addison-Wesley,
2011.

[11] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, USA: Addison-
Wesley, 1994.

[12] "Design Patterns in Java Tutorial," [Online]. Available:
https://www.tutorialspoint.com/design_pattern/. [Accessed 23 2 2017].

