

Journal of Information Systems Engineering and Business Intelligence
Vol. 3, No. 1, April 2017

e-ISSN 2443-2555 ©2017 The Authors. Published by Universitas Airlangga.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

doi: http://dx.doi.org/10.20473/jisebi.3.1.8-15

Introducing an Educational Tool for Learning Branch
& Bound Strategy

Sofriesilero Zumaytis1), Oscar Karnalim2)
1)2)Faculty of Information Technology, Maranatha Christian University

Jl.Prof.drg.Suria Sumantri, MPH No. 65, Bandung, Indonesia
1)sofriesilero.zumaytis@gmail.com
2)oscar.karnalim@it.maranatha.edu

Abstract—According to our informal survey, Branch & Bound strategy is considerably difficult to learn
compared to other strategies. This strategy consists of several complex algorithmic steps such as Reduced Cost
Matrix (RCM) calculation and Breadth First Search. Thus, to help students understanding this strategy, AP-
BB, an educational tool for learning Branch & Bound is developed. This tool includes four modules which are
Brute Force solving visualization, Branch & Bound solving visualization, RCM calculator, and case-based
performance comparison. These modules are expected to enhance student’s understanding about Branch &
Bound strategy and its characteristics. Furthermore, our work incorporates TSP as its case study and Brute
Force strategy as a baseline to provide a concrete impact of Branch & Bound strategy. According to our
qualitative evaluation, AP-BB and all of its features fulfil student necessities for learning Branch & Bound
strategy.

Keywords— Educational Tool, Branch & Bound, Algorithm Strategy, Algorithm Visualization
Article history:
Received 10 January 2017; Received in revised form 23 February 2017; Accepted 23 February 2017;
Available online 28 April 2017

I. INTRODUCTION

Despite the fact that Algorithm is the core topic
of Computer Science (CS), not all undergraduate
CS students can understand it properly by only
relying on in-class session. Several students may
require more time to understand it than others
whereas some of them may require more detailed
explanation than others. Therefore, to handle this
issue, several algorithm-centric CS educational
tools are developed. Using these tools, students can
learn algorithm independently without relying
heavily on in-class session.

According to the fact that CS students are not
only expected to understand how an algorithm
works but also why an algorithm is better than
others (Velázquez-Iturbide & Pérez-Carrasco,
2009; Joint Task Force on Computing Curricula,
Association for Computing Machinery (ACM) and
IEEE Computer Society, 2013), several CS
educational tools are focused on comparing
algorithms and exploiting algorithm
characteristics. GreedEx (Velázquez-Iturbide &
Pérez-Carrasco, 2009), GreedExCol(Debdi,
Paredes-Velasco, & Velázquez-Iturbide, 2015),
AP-SA (Jonathan, Karnalim, & Ayub, 2016), and
Complexitor (Elvina & Karnalim, in press) are
several tools which fall into this category. Using
these tools, students are encouraged to observe and
differentiate various algorithms through their
respective characteristics.

Branch & Bound is an algorithm strategy for
solving state-space-search-based problem by
incorporating heuristic and Breadth-First-Search
(BFS) (Levitin, 2012). This strategy is frequently

incorporated on various popular tasks such as
Travelling Salesperson Problem (TSP) and N-
Queens. However, according to our informal
survey, this strategy is quite difficult to be
understood by undergraduate students. Most
students are overwhelmed by numerous steps
required to solve a given problem. In addition,
some of them also lack of visual imagination
which makes them harder to visualize Branch &
Bound logical tree for solving a problem.

To overcome this issue, this paper proposes
AP-BB, a CS educational tool for learning Branch
& Bound with TSP as its case study. This tool is
intended to aid student for learning Branch &
Bound strategy and its characteristics. Branch &
Bound algorithmic’s steps are covered by solving
visualization whereas its characteristics are
covered by case-based performance comparison.
Solving visualization is split into three modules
which are Brute Force solving visualization,
Branch & Bound solving visualization, and
Reduced Cost Matrix (RCM) calculator. The first
module is responsible to cover Brute Force
strategy whereas the latter two are responsible to
cover Branch & Bound strategy. Brute Force is
incorporated in our AP-BB module as a baseline
for exploiting Branch & Bound strategy. Both
strategies are compared based on their respective
characteristics on case-based performance
comparison module.

II. RELATED WORKS

Algorithm is a Computer Science (CS) topic
which is mandatory understandable by CS

Sofriesilero Zumaytis&Oscar Karnalim
 Journal of Information Systems Engineering and Business Intelligence, 2017, 3 (1), 8-15

9

students. However, due to various cognitive skills
among CS students, in-class session may be not
sufficient to fulfill all students learning process,
especially for the weak ones. Thus, to overcome
this issue, several CS educational tools for learning
algorithm are developed. These tools are expected
to help students learn algorithm-related topic
beyond in-class session. Students can learn a
particular topic by themselves without depending
on in-class lecture. For teaching algorithm, CS
educational tools may target various level of
algorithm understanding. It starts from technical
implementation (e.g., program creation) to
abstractive form (e.g., algorithmic steps).

CS educational tools which focused on
technical implementation are frequently referred as
Program Visualization (PV) (Bentrad & Meslati,
2011). These tools encourage students to
implement their algorithm into source codes and
assist them to understand it properly (Guo, 2013;
Rajala, Laakso, Kaila, & Salakoski, 2008; Cisar,
Pinter, Radosav, & Cisar, 2010).Python Tutor
(Guo, 2013), Jeliot 3 (Cisar, Pinter, Radosav, &
Cisar, 2010), JIVE (Gestwicki & Jayaraman,
2002), and VILLE (Rajala, Laakso, Kaila, &
Salakoski, 2008)are several examples that fall into
this category. These tools visualize all variables
and function calls from given source code as its
execution advances step-by-step. In such manner,
students can analyze and learn how their algorithm
works directly through its implementation (i.e.
source code). In addition, some of them also
incorporate several supplementary engagements
such as pop-up question to enhance student
understanding.

According to the fact that several students are
overwhelmed by a large amount of compile errors
when developing algorithm implementation (i.e.
source code), a tool named Verificator (Radosevic,
Orehovacki, & Lovrencic, 2009)incorporates a
"traffic-light" system to limit the number of
compile errors. Students are forced to compile their
code every N modifications and they can only
continue to write code if their code is successfully
compiled. In such manner, students will experience
only a small amount of errors each time a source
code being compiled.

However, since limiting compile errors does
not mean removing them completely, several tools
replace conventional source-code-writing task with
visual representation to avoid syntactic errors.
Students are encouraged to drag-and-drop several
components to generate source code (i.e. algorithm
implementation). Each time a component is added,
students should provide necessary information for
given component in limited input fields. In such
manner, no syntactic errors will be produced at
compile phase since all potential errors have
already handled directly when adding each
component. ProGuide (Areias & Mendes, 2007),

Raptor (Carlisle, Wilson, Humphries, & Hadfield,
2005), SFC editor (Watts, 2004), and Alice
(Cooper, Dann, & Pausch, 2000) are several
examples that fall into this category. Among these
tools, Alice is the only work which incorporates
fun as their major contribution. It enables student
to learn algorithm implementation through
interactive environments (e.g. 3D visualization and
real-world object).Students can arrange their own
algorithm based on provided instructions and see
how their composed algorithm works in interactive
manner. This kind of approach is inspired from
other fun-based CS educational tool such as
CeeBot4 (Anonymous, Learn Programming with
Ceebot4, 2008) and KarelRobot (Buck & Stucki,
2001),

In more abstractive manner, several CS
educational tools are focused on teaching
algorithm in the form of algorithmic steps.
Students are encouraged to understand algorithm
by learning how that algorithm works step by step.
These tools are frequently referred as Algorithm
Visualization (AV) tools since they incorporate
visualization as its main engagement form
(Shaffer, et al., 2010; Halim, Koh, Loh, & Halim,
2012; Christiawan & Karnalim, 2016; Jonathan,
Karnalim, & Ayub, 2016). Nowadays, most AV
tools are listed in AV portals such as AlgoViz
(Anonymous, AlgoViz.org : The Algorithm
Visualization Portal, 2009) and VisuAlgo (Halim,
VisuAlgo, 2010). Students can access these portals
through the Internet and utilize them to learn
algorithms directly. However, due to varied
university course need, several AV tools are also
re-developed locally to match course syllabus
(Christiawan & Karnalim, 2016; Jonathan,
Karnalim, & Ayub, 2016). These tools frequently
outperform standard AV tools in terms of its
effectiveness due to its high-synchronization with
course materials.

Even though there are various algorithm-
centric CS educational tools, only a few of them
that is focused on algorithm characteristics. Most
of them are only focused on applying algorithm to
solve a particular problem. GreedEx (Velázquez-
Iturbide & Pérez-Carrasco, 2009),
GreedExCol(Debdi, Paredes-Velasco, &
Velázquez-Iturbide, 2015), AP-SA (Jonathan,
Karnalim, & Ayub, 2016), and Complexitor
(Elvina & Karnalim, in press) are several AV tools
which are focused on algorithm characteristics.
Using algorithm characteristics, students are
expected to determine why an algorithm is better
than others for solving given problem.

GreedEx is an educational tool for learning
Greedy Algorithm characteristics in comparative
manner. Students can explore how several greedy
algorithms work, compare their respective output,
and determine which greedy algorithm is the best
approach for solving the given problem.

Sofriesilero Zumaytis&Oscar Karnalim
 Journal of Information Systems Engineering and Business Intelligence, 2017, 3 (1), 8-15

10

GreedExCol is an extended-version of GreedEx. It
incorporates Computer-Supportive Collaborative
System (CSCL), so that students can share and
argue about their work in collaborative manner.

AP-SA (Jonathan, Karnalim, & Ayub, 2016) is
an AV tool for teaching various algorithm
strategies. It incorporates case-based performance
comparison as one of their core features, so that
students can compare the characteristics of each
algorithm and determine which algorithm is the
best to solve the given problem. It incorporates 4
algorithm strategies which are Brute Force, Greedy
Algorithm, Backtracking, and Dynamic
Programming. These strategies are implemented
by involving two case studies which are 0/1
Knapsack and Minimum Spanning Tree (MST)
0/1.

Complexitor (Elvina & Karnalim, in press) is
an educational tool for learning algorithm time
complexity in practical manner. This tool, at some
extent, may enhance student understanding for
selecting the best algorithm in terms of its time
complexity. Students can calculate time
complexity based on algorithm implementation
(i.e. source code) and input set. Complexitor
incorporates two measurements for calculating
time complexity. These measurements are actual
processing time and the number of involved
instructions. The number of involved instructions
is incorporated to calculate time complexity based
on small input set. As we know, actual processing
time may yield biased result on small input set due
to hardware and operating system dependency.

To our knowledge, there are no algorithm-
centric CS educational tool which covers Branch &
Bound strategy and its characteristics. Branch &
Bound is an optimization technique for solving
state-space-search-based problem by incorporating
heuristic and Breadth-First-Search (BFS) (Levitin,
2012). It expands current branches in BFS manner
till a feasible solution found and bounds all
possible solution with higher heuristic than the
feasible one. Even though this strategy is less
popular than Greedy or Dynamic Programming
(DP) strategy, it is still incorporated in various
tasks such as Travelling Salesperson Problem
(TSP) and N-Queens. Therefore, this strategy is
considerably important to be understood by CS
students.

This paper proposes an educational tool for
learning Branch & Bound through Visualization. It
is named AP-BB which is an acronym of
“educational tool for learning Branch & Bound” in
Indonesian language. AP-BB is developed based
on the fact that Branch & Bound strategy is quite
difficult to learn among all algorithm strategies
taught on Information Technology major in our
university. This finding is deducted based on our
informal observation of student tests on
Algorithmic Strategy course from academic year of

2014/2015 and 2015/2016. Most students fail to
answer Branch & Bound problem correctly.

In order to provide a concrete example for
representing the impact of Branch & Bound
strategy, our work incorporates TSP as its case
study. TSP is a Non-Polynomial problem which
asks the shortest Hamilton circuit from given cities
based on its distance (Levitin, 2012). Hamilton
circuit refers to a cycle traversing all nodes in
graph once (i.e. cities) that starts and ends on the
same city. Furthermore, our work incorporates
Brute Force as a baseline to draw out Branch &
Bound characteristics. Both strategies are
implemented for solving similar problem (TSP) so
that they are comparable to each other.

In general, AP-BB consists of four modules
which are Brute Force solving visualization,
Branch & Bound solving visualization, Reduced
Cost Matrix (RCM) calculator, and case-based
performance comparison. The first two modules
are incorporated to learn TSP problem solving with
Brute Force or Branch & Bound strategy; RCM
calculator is incorporated to learn RCM calculation
as Branch & Bound TSP heuristics; and Case-
based performance comparison is incorporated to
analyze Branch & Bound characteristic when
solving a particular TSP case. These characteristics
are expected to enhance student understanding
further about Branch & Bound strategy and its
characteristics.

III. AP-BB DESIGN

(Jonathan, Karnalim, & Ayub, 2016) proposes
five major features for learning algorithm strategy.
These features are solving visualization, case-
based performance comparison, file conversion,
input generator, and language preference. Among
these features, AP-BB only incorporates the first
three features. Input generator and language
preference are excluded based on following
reasons: 1) Input generator is not required in AP-
BB since our input set is preferably small. We limit
our input set into TSP with 6 cities to keep the
clarity of our visualization and solving steps. As
we know, Branch & Bound strategy is quite
complex and difficult to understand, especially for
solving large input set; 2) Language preference is
not required in AP-BB since our tool is developed
using student’s native language (i.e. Indonesian
language). Thus, there will be no language barrier
on student learning process.

Solving visualization in AP-BB is split into
three modules which are Brute Force solving
visualization (BFSV), Branch & Bound solving
visualization (BBSV), and Reduced Cost Matrix
calculator (RCMC). BFSV and BBSV are
incorporated for learning TSP problem solving
with Brute Force or Branch & Bound strategy
respectively. Whereas RCMC is incorporated for
learning RCM calculation which is required for

Branch & Bound TSP problem solving. Even
though RCM calculation is actually a part of
Branch & Bound TSP problem solving, its module
(RCMC) is separated with BBSV to simplify
BBSV algorithmic steps. By assuming that
students have already known
RCM, BBSV can consider RCM calculation as a
single algorithmic step. In other words, it may
reduce visualized algorithmic steps and simplify
the processes. Furthermore, all
visualization modules are featured with file
conversion, so that students can save provided
algorithmic steps on a text file. This file can be
used as a reference for further discussion about
given algorithmic steps with other student.

Case-based performance comparison (CPC) in
AP-BB compares Branch & Bound with Brute
Force strategy in terms of its performance
characteristics. This module is represented as a
separate module which is placed at the same level
with solving visualization modules. Consequently,
our AP-BB consists of four modules wherein three
of them are solving visualization modules and one
of them is case-based performance comparison.

Our AP-BB main window can be seen on
Figure 1 and Figure 2. Figure 1 represent
view whereas Figure 2 represents its view when
running a module. AP-BB main window consists
of five sub-panels which are module selection,
input form, control panel, visualization panel, and
description panel. These sub-panels are referred as
A, B, C, D, and E respectively on Figure 1.
Module selection enables students to select which

Sofriesilero Zumaytis
 Journal of Information Systems Engineering and Business Intelligence

11

Bound TSP problem solving. Even
though RCM calculation is actually a part of
Branch & Bound TSP problem solving, its module
(RCMC) is separated with BBSV to simplify
BBSV algorithmic steps. By assuming that

 how to calculate
, BBSV can consider RCM calculation as a

single algorithmic step. In other words, it may
reduce visualized algorithmic steps and simplify
the processes. Furthermore, all of the solving
visualization modules are featured with file

ts can save provided
algorithmic steps on a text file. This file can be
used as a reference for further discussion about
given algorithmic steps with other student.

based performance comparison (CPC) in
BB compares Branch & Bound with Brute

strategy in terms of its performance
characteristics. This module is represented as a
separate module which is placed at the same level
with solving visualization modules. Consequently,

BB consists of four modules wherein three
visualization modules and one

based performance comparison.
BB main window can be seen on

Figure 1 and Figure 2. Figure 1 represents default
represents its view when

BB main window consists
panels which are module selection,

input form, control panel, visualization panel, and
panels are referred as

A, B, C, D, and E respectively on Figure 1.
Module selection enables students to select which

modules they want to learn. For each module,
students can provide input set through input form
and start learning through visualization
visualization panel. However, t
understanding, each Visualization
featured with supplementary information which
can be seen on description panel. This information
is expected to help students understand
visualization at a particular state. Control panel
enables students to control
visualization. They can set the
replay the overall visualization, skip several
visualization states, and return to previous
visualization state. In addition, control panel is also
featured with application tutorial
can adapt and incorporate AP
ease.

A. Brute Force Solving Visualization (BFSV)

This module is incorporated to provide initial
information about TSP default problem solving
(i.e., Solving TSP with Brute Force). It generates
all possible Hamilton paths and selects path with
the lowest distance as its result. In order to
synchronize our visualization with in
this module is visualized with logical tree which
sample view can be seen in Figure 3. Each node
represents current city whereas each edge
represents distance required from current to next
city. At the end of the visualization, solution path
will be marked with green color. It starts from root
as its initial city and ends on a leaf node as its
destination.

Figure 1. AP-BB Default View

Sofriesilero Zumaytis&Oscar Karnalim
Journal of Information Systems Engineering and Business Intelligence, 2017, 3 (1), 8-15

ey want to learn. For each module,
students can provide input set through input form
and start learning through visualization given on
visualization panel. However, to enhance student’s

Visualization step is also
tary information which

can be seen on description panel. This information
is expected to help students understand the given
visualization at a particular state. Control panel
enables students to control the solving

the animation speed,
overall visualization, skip several

visualization states, and return to previous
visualization state. In addition, control panel is also
featured with application tutorial, so that students
can adapt and incorporate AP-BB features with

Brute Force Solving Visualization (BFSV)

This module is incorporated to provide initial
information about TSP default problem solving

Solving TSP with Brute Force). It generates
all possible Hamilton paths and selects path with
the lowest distance as its result. In order to
synchronize our visualization with in-class lecture,
this module is visualized with logical tree which

can be seen in Figure 3. Each node
represents current city whereas each edge
represents distance required from current to next
city. At the end of the visualization, solution path
will be marked with green color. It starts from root

d ends on a leaf node as its

Sofriesilero Zumaytis&Oscar Karnalim
 Journal of Information Systems Engineering and Business Intelligence, 2017, 3 (1), 8-15

12

Figure 2. AP-BB View When Running a Module

Figure 3. Brute Force Visual Representation

B. Branch & Bound Solving Visualization (BBSV)

This module is incorporated to learn Branch &
Bound strategy in solving TSP. BFS traversal is
incorporated till a feasible solution is found and all
solution candidates with higher heuristic are
automatically removed from consideration. Similar
with BFSV, this module is also visualized with
logical tree. Yet, logical tree in this module
incorporates expand view to display RCM. Sample
view of this module visual representation can be
seen on Figure 4 whereas its expand view can be
seen on Figure 5. Each node represents current city
whereas each edge represents heuristic value
required from initial to next city. For each node,
students can view its RCM by clicking that node.
After clicked, an expanded view will be shown
displaying RCM value as seen on Figure 5.

Figure 4. Branch & Bound Visual Representation

C. Reduced Cost Matrix Calculator (RCMC)

This module is incorporated to learn RCM
calculation based on given matrix. RCM is

generated based on two-fold which are row and
column reduction (Levitin, 2012). Row reduction
starts from the first row to the last one. It reduces
all elements on given row with its lowest value.
For example, if a row consists of ∞, 20, 30, 10, and
11, thus its reduced form will be ∞, 10, 20, 0, and
1 since each element is reduced by 10 as its lowest
value. Column reduction works similar with row
reduction except that it works on column instead of
row. It is conducted right after row reduction is
completed. Visual representation incorporated in
this module is a matrix which sample view can be
seen on Figure 6. Gray cells represent matrix
index; White cells represent matrix content; and
INF represents infinity value (∞). During
visualization, selected row/column will be colored
yellow and its lowest value will be colored green
for each reduction.

Figure 5. RCM View on Branch & Bound Visual
Representation

Figure 6. RCM Calculation Visual Representation

Sofriesilero Zumaytis&Oscar Karnalim
 Journal of Information Systems Engineering and Business Intelligence, 2017, 3 (1), 8-15

13

D. Case-based Performance Comparison

This module is incorporated to learn Branch &
Bound characteristic when compared with Brute
Force. Based on given input set, characteristics for
both strategies are recorded and displayed as
standard table on visualization panel. In such
manner, students can analyze and determine why
Branch & Bound is better than Brute Force (i.e.
default TSP solving mechanism). However, since
Branch & Bound is an optimization technique to
minimize execution time, characteristics
incorporated in this module are limited to time-
based characteristics. These characteristics are
best-case time complexity, worst-case time
complexity, actual processing time, and the
number of involved instructions. The first two
characteristics are statically similar regardless of
input set. They are displayed to provide theoretical
foundation about both strategies. On the other
hand, the latter two characteristics are dynamically
changed depending on input set. Actual processing
time is measured in nanoseconds whereas the
number of involved instructions is measured based
on executed processes for solving given problem.
The number of involved execution is displayed
together with actual processing time since actual
processing time may yield biased result on small
input set due to hardware and operating system
dependency. The number of involved execution is
calculated by embedding standard counter
mechanism on algorithm implementation. This
mechanism is inspired from Complexitor’s
approach (Elvina & Karnalim, in press) for
calculating time complexity in practical manner.

IV. EVALUATION

In order to prove the effectiveness of our tool, a
qualitative evaluation is conducted to 20
undergraduate students from Faculty of

Information Technology, Maranatha Christian
University, Indonesia. Respondents are asked to
answer 13 questionnaire statements on 7-points
Likert scale (1 represents strongly disagree; 2
represents disagree; 3 represents negative neutral;
4 represents neutral; 5 represents positive neutral;
6 represents agree; and 7 represents strongly
agree). However, to keep the validity of our
evaluation, respondents are limited to students that
have already taken Algorithmic Strategy course in
their previous semesters. Algorithmic Strategy is a
CS-based course which includes Branch & Bound
strategy as one of its syllabus material. In such
manner, all respondents are guaranteed to have
known Branch & Bound strategy in general. This
prior knowledge is required since AP-BB assumes
that students have already known several
algorithm-strategy terminologies such as node,
edge, and heuristics.

The detail and result of our qualitative
evaluation can be seen on Table I. For
convenience, each statement is assigned with
unique ID and will be referred as its ID at the rest
of this paper. In addition to average score, each
questionnaire statement is also featured with its
standard deviation. Low standard deviation means
that most given scores are around its average score.
In other words, most respondents have similar
perspective toward given statement.

Q1 and Q2 are incorporated to observe Brute
Force and Branch & Bound difficulty based on
student’s perspective. According to Table I, our
respondents tend to positively agree that Branch
&Bound is difficult to understand (Q2 > 5). In
addition, according to its low standard deviation, it
can also be stated that most respondents have
similar perspective about it. This finding indirectly
strengthens our informal observation result
described in Related Works. Branch & Bound is

TABEL 1. QUESTIONNAIRE STATEMENTS AND ITS RESULT

ID Statement
Averaged

Score
Standard
Deviation

Q1 Brute Force strategy for solving TSP are difficult to understand 3.6 1.729

Q2 Branch & Bound strategy for solving TSP are difficult to understand 5.05 1.146

Q3 Visualization helps students to learn Brute Force strategy for solving TSP 6.05 1.191

Q4 Visualization helps students to learn Branch & Bound strategy for solving TSP 5.75 1.099

Q5 Dynamic input helps students to learn Brute Force strategy for solving TSP 5.05 1.517

Q6 Dynamic input helps students to learn Branch & Bound strategy for solving TSP 5.8 1.105

Q7 RCM calculator helps students to learn Branch & Bound strategy for solving TSP 5.95 0.826

Q8
Case-based performance comparison is effective to analyze Branch & Bound
characteristics and exploit its benefits

5.8 1.056

Q9
The number of involved instructions in case-based performance comparison helps
students to understand how time complexity works

5.45 1.191

Q10 AP-BB UI fulfills user necessity in terms of learning Branch & Bound strategy 6.2 1.005

Q11
AP-BB functionality fulfills user necessity in terms of learning Branch & Bound
strategy

6.05 0.887

Q12 AP-BB tutorial is declarative 5.6 1.603

Q13 In general, AP-BB helps students to learn Branch & Bound strategy 6.25 0.786

Sofriesilero Zumaytis&Oscar Karnalim
 Journal of Information Systems Engineering and Business Intelligence, 2017, 3 (1), 8-15

14

quite difficult to learn when compared with other
strategies. On the contrary, our respondents tend to
disagree that Brute Force is also difficult to
understand (Q1 < 4). This finding is natural since
Brute Force is a naive approach which directly
solves the problem. Thus, its algorithmic steps are
simpler than Branch & Bound. Despite of its
simpler algorithmic steps, Brute Force is still
perceived as a difficult strategy for several
students. 2 of 20 respondents are agreed that Brute
Force is a difficult strategy (Q2 ≥ 6) whereas 4 of
them tend to agree about its difficulty (Q2 > 5).
This score variance yields high standard deviation
for Q2. It yields1.729 of standard deviation which
is quite high compared to standard deviation of
other questionnaire statements.

 Q3-Q6 are incorporated to evaluate the impact
of AP-BB engagement on enhancing student
understanding. AP-BB incorporates two
engagement forms extracted from Naps
Engagement Taxonomy (Naps, et al., 2003). These
engagements are viewing and constructing.
Viewing is implemented as solving visualization
whereas constructing is implemented as dynamic
inputs. In general, both viewing and constructing
yield positive feedbacks. All statements yield an
average score higher than 5 (tends to agree).
Visualization (Q3-Q4) yields high impact for our
respondents (average score is around 6) since most
respondents are visual learners. They rely heavily
on what they see when learning something.
Constructing for learning Branch & Bound yields
more positive feedbacks than constructing for
learning Brute Force since Branch & Bound is
more difficult to understand. Most respondents feel
that they are required to try the algorithm multiple
times with various inputs to understand how that
algorithm works.

Q7-Q9 are incorporated to evaluate the impact
of RCM calculator and case-based performance
comparison. Q7 is incorporated to evaluate the
impact of RCM calculator; Q8 is incorporated to
evaluate the impact of case-based performance
comparison for learning Branch & Bound
characteristics; and Q9 is incorporated to evaluate
the impact of displaying the number of involved
instruction for learning time complexity in Brute
Force and Branch & Bound. In general, all
statements yield positive feedbacks since its
average score is higher than 5with low standard
deviation. Thus, it can be stated that most
respondents tend to agree that RCM and our case-
based performance comparison enhance student
understanding. In addition, most respondents have
similar perspective about it, since Q7-Q9 yield low
standard deviation.

Q10-Q13 are incorporated to evaluate standard
application aspects on AP-BB. Q10 is incorporated
to evaluate application UI; Q11 is incorporated to
evaluate application functionality; Q12 is

incorporated to evaluate how declarative the given
tutorial; and Q13 is incorporated to evaluate
overall system for learning Branch & Bound
strategy. Most respondents agreed that our
application UI and functionality fulfill user
necessity for learning Branch & Bound strategy.
This finding is extracted from Q10 and Q11
average score which is higher than 6 (tends to
strongly agree) with low standard deviation. Q12
yields average score lower than 6 since our tutorial
contain fewer images for visual representation.
Most of our respondents are visual learners who
rely heavily on visual image. Thus, our textual
information on tutorial is not sufficient enough for
them. They require several visual images to learn
the material with ease. However, our tutorial still
yields positive feedbacks by respondents since its
average score is still higher than 5 (tends to
agree).When perceived as the whole application,
AP-BB may help student to learn Branch &
Bound. This finding is resulted from Q13
statement which yields the highest average score
among all questionnaire statements. In addition, it
also yields the lowest standard deviation which
indirectly state that the most respondents have
similar positive perspective about our AP-BB.

V. CONCLUSION AND FUTURE WORKS

We have proposed AP-BB, an educational tool
for learning Branch &Bound strategy and its
characteristics. This tool is developed based on our
informal survey which indirectly states that Branch
& Bound strategy is quite difficult to understand,
especially for undergraduate students. This finding
is also strengthened by Q2 questionnaire result
where most respondents tend to agree about
Branch & Bound difficulty.

In general, AP-BB incorporates two user
engagements which are viewing and constructing.
Both engagements yield positive feedbacks from
our respondents since they agreed that these
components may help students for learning Branch
& Bound (Q3-Q6). In terms of its features, AP-BB
consists of four modules which are Brute Force
solving visualization, Branch & Bound solving
visualization, Reduced Cost Matrix (RCM)
calculator, and case-based performance
comparison. According to our qualitative
evaluation (Q3-Q9), these modules, at some extent,
help student to learn Branch & Bound strategy and
its characteristics. Students can learn how Branch
& Bound strategy works on a particular problem
and compare its impact with standard algorithm
benchmark (Brute Force strategy).In addition, AP-
BB has also fulfilled standard application aspects
such as UI and functionality for learning Branch &
Bound. This finding is based on our qualitative
evaluation (Q10-Q13) where most respondents
tend to agree about its fulfillment.

Sofriesilero Zumaytis&Oscar Karnalim
 Journal of Information Systems Engineering and Business Intelligence, 2017, 3 (1), 8-15

15

For further research, a controlled experiment of
AP-BB will be conducted on Algorithmic Strategy
course in our university. We want to evaluate the
impact of this tool based on student grade
improvement and in-class behavior. In addition, we
also intend to incorporate more engagements from
Naps Engagement Taxonomy so that our tool may
enhance student understanding further.

REFERENCES

AlgoViz.org : The Algorithm Visualization Portal.
(n.d.). Retrieved 12 7, 2015 from
http://algoviz.org/

Areias, C., & Mendes, A. (2007). A tool to help
students to develop programming skills. The
2007 international conference on Computer
systems and technologies. Bulgaria. ACM.

Bentrad, S., & Meslati, D. (2011). Visual Programming
and Program Visualization- Toward an Ideal
Visual Software Engineering System -.
ACEEE International Journal on Information
Technology, 1 (3). 43-49.

Buck, D., & Stucki, D. J. (2001). JKarelRobot: a case
study in supporting levels of cognitive
development in the computer science
curriculum. The thirty-second SIGCSE
technical symposium on Computer Science
Education (pp. 16-20). Charlotte: ACM.

Carlisle, M. C., Wilson, T. A., Humphries, J. W., &
Hadfield, S. M. (2005). RAPTOR: a visual
programming environment for teaching
algorithmic problem solving. The 36th
SIGCSE technical symposium on Computer
Science Education (pp. 176-180). St. Louis:
ACM.

Christiawan, L., & Karnalim, O. (2016). AP-ASD1 An
Indonesian Desktop-based Educational Tool
for Basic Data Structures. Jurnal Teknik
Informatika dan Sistem Informasi (JuTISI), 2
(1), 21-30..

Cisar, S. M., Pinter, R., Radosav, D., & Cisar, P.
(2010). Software visualization: The
educational tool to enhance student learning.
The 33rd International Convention MIPRO
(pp. 990-994). Opatija: IEEE.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-
D tool for introductory programming
concepts. Journal of Computing in Small
Colleges, 15 (5), 67-71.

Debdi, O., Paredes-Velasco, M., & Velázquez-Iturbide,
J. Á. (2015). GreedExCol, A CSCL tool for
experimenting with greedy algorithms.
Computer Applications in Engineering
Education, 23 (5), 790-804.

Elvina, & Karnalim, O. (2017). Complexitor: An
Educational Tool for Learning Algorithm
Time Complexity in Practical Manner.
ComTech: Computer, Mathematics and
Engineering Applications, 8 (1).

Gestwicki, P., & Jayaraman, B. (2002). Interactive
Visualization of Java Programs. Symposia on
Human Centric Computing Languages and

Environments (pp. 226-235). Washington:
ACM.

Guo, P. J. (2013). Online python tutor: embeddable
web-based program visualization for cs
education. The 44th ACM technical
symposium on Computer science education
(pp. 579-584). Denver. ACM.

Halim, S. (n.d.). VisuAlgo. Retrieved 5 12, 2015 from
http://visualgo.net/

Halim, S., Koh, Z. C., Loh, V. B., & Halim, F. (2012).
Learning Algorithms with Unified and
Interactive Web-Based Visualization.
Olympiads in Informatics, 6, 53-68.

Joint Task Force on Computing Curricula , Association
for Computing Machinery (ACM) and IEEE
Computer Society. (2013). Curriculum
Guideliness for Undergraduate Degree
Programs in Computer Science. New York:
ACM.

Jonathan, F. C., Karnalim, O., & Ayub, M. (2016).
Extending The Effectiveness of Algorithm
Visualization with Performance Comparison
through Evaluation-integrated Development.
Seminar Nasional Aplikasi Teknologi
Informasi. Yogyakarta: Universitas Islam
Indonesia.

Learn programming with CeeBot4. (2008, 9 5).
Retrieved 11 5, 2016 from
http://www.ceebot.com/ceebot/4/4-e.php.

Levitin, A. (2012). Introduction to The Design and
Analysis of Algorithms. Pearson.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., et al. (2003).
Exploring the role of visualization and
engagement in computer science education.
ITiCSE-WGR '02 Working group reports from
ITiCSE on Innovation and technology in
computer science education. New York:
ACM.

Radosevic, D. Orehovacki, T. & Lovrencic, A. (2009).
Verificator: Educational Tool for Learning
Programming. Informatics in Education, 8
(2).

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T.
(2008). Effectiveness of Program
Visualization : A case study with the ViLLE
Tool. Journal of Information Technology
Education : Innovation in Practice, 7, 15-32.

Shaffer, C. A., Cooper, M. L., Alon, A. J., Akbar, M.,
Stewart, M., Ponce, S., et al. (2010).
Algorithm Visualization: The State of the
Field. ACM Transactions on Computing
Education (TOCE), 10 (3), 1-22.

Velázquez-Iturbide, J., & Pérez-Carrasco, A. (2009).
Active learning of greedy algorithms by
means of interactive experimentation. ITiCSE
'09 Proceedings of the 14th annual ACM
SIGCSE conference on Innovation and
technology in computer science education
(pp. 119-123). New York: ACM.

Watts, T. (2004). The SFC editor a graphical tool for
algorithm development. Journal of
Computing Sciences in Colleges, 20 (2), 73-
85.

