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Abstract—According to our informal survey, Branch & Bound strategy is considerably difficult to learn 
compared to other strategies. This strategy consists of several complex algorithmic steps such as Reduced Cost 
Matrix (RCM) calculation and Breadth First Search. Thus, to help students understanding this strategy, AP-
BB, an educational tool for learning Branch & Bound is developed. This tool includes four modules which are 
Brute Force solving visualization, Branch & Bound solving visualization, RCM calculator, and case-based 
performance comparison. These modules are expected to enhance student’s understanding about Branch & 
Bound strategy and its characteristics. Furthermore, our work incorporates TSP as its case study and Brute 
Force strategy as a baseline to provide a concrete impact of Branch & Bound strategy. According to our 
qualitative evaluation, AP-BB and all of its features fulfil student necessities for learning Branch & Bound 
strategy. 
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I. INTRODUCTION 

Despite the fact that Algorithm is the core topic 
of Computer Science (CS), not all undergraduate 
CS students can understand it properly by only 
relying on in-class session. Several students may 
require more time to understand it than others 
whereas some of them may require more detailed 
explanation than others. Therefore, to handle this 
issue, several algorithm-centric CS educational 
tools are developed. Using these tools, students can 
learn algorithm independently without relying 
heavily on in-class session. 

According to the fact that CS students are not 
only expected to understand how an algorithm 
works but also why an algorithm is better than 
others (Velázquez-Iturbide & Pérez-Carrasco, 
2009; Joint Task Force on Computing Curricula, 
Association for Computing Machinery (ACM) and 
IEEE Computer Society, 2013), several CS 
educational tools are focused on comparing 
algorithms and exploiting algorithm 
characteristics. GreedEx (Velázquez-Iturbide & 
Pérez-Carrasco, 2009), GreedExCol(Debdi, 
Paredes-Velasco, & Velázquez-Iturbide, 2015), 
AP-SA (Jonathan, Karnalim, & Ayub, 2016), and 
Complexitor (Elvina & Karnalim, in press) are 
several tools which fall into this category. Using 
these tools, students are encouraged to observe and 
differentiate various algorithms through their 
respective characteristics.  

Branch & Bound is an algorithm strategy for 
solving state-space-search-based problem by 
incorporating heuristic and Breadth-First-Search 
(BFS) (Levitin, 2012). This strategy is frequently 

incorporated on various popular tasks such as 
Travelling Salesperson Problem (TSP) and N-
Queens. However, according to our informal 
survey, this strategy is quite difficult to be 
understood by undergraduate students. Most 
students are overwhelmed by numerous steps 
required to solve a given problem. In addition, 
some of them also lack of visual imagination 
which makes them harder to visualize Branch & 
Bound logical tree for solving a problem. 

To overcome this issue, this paper proposes 
AP-BB, a CS educational tool for learning Branch 
& Bound with TSP as its case study. This tool is 
intended to aid student for learning Branch & 
Bound strategy and its characteristics. Branch & 
Bound algorithmic’s steps are covered by solving 
visualization whereas its characteristics are 
covered by case-based performance comparison. 
Solving visualization is split into three modules 
which are Brute Force solving visualization, 
Branch & Bound solving visualization, and 
Reduced Cost Matrix (RCM) calculator. The first 
module is responsible to cover Brute Force 
strategy whereas the latter two are responsible to 
cover Branch & Bound strategy. Brute Force is 
incorporated in our AP-BB module as a baseline 
for exploiting Branch & Bound strategy. Both 
strategies are compared based on their respective 
characteristics on case-based performance 
comparison module. 

II. RELATED WORKS 

Algorithm is a Computer Science (CS) topic 
which is mandatory understandable by CS 
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students. However, due to various cognitive skills 
among CS students, in-class session may be not 
sufficient to fulfill all students learning process, 
especially for the weak ones. Thus, to overcome 
this issue, several CS educational tools for learning 
algorithm are developed. These tools are expected 
to help students learn algorithm-related topic 
beyond in-class session. Students can learn a 
particular topic by themselves without depending 
on in-class lecture. For teaching algorithm, CS 
educational tools may target various level of 
algorithm understanding. It starts from technical 
implementation (e.g., program creation) to 
abstractive form (e.g., algorithmic steps). 

CS educational tools which focused on 
technical implementation are frequently referred as 
Program Visualization (PV) (Bentrad & Meslati, 
2011). These tools encourage students to 
implement their algorithm into source codes and 
assist them to understand it properly (Guo, 2013; 
Rajala, Laakso, Kaila, & Salakoski, 2008; Cisar, 
Pinter, Radosav, & Cisar, 2010).Python Tutor 
(Guo, 2013), Jeliot 3 (Cisar, Pinter, Radosav, & 
Cisar, 2010), JIVE (Gestwicki & Jayaraman, 
2002), and VILLE (Rajala, Laakso, Kaila, & 
Salakoski, 2008)are several examples that fall into 
this category. These tools visualize all variables 
and function calls from given source code as its 
execution advances step-by-step. In such manner, 
students can analyze and learn how their algorithm 
works directly through its implementation (i.e. 
source code). In addition, some of them also 
incorporate several supplementary engagements 
such as pop-up question to enhance student 
understanding.  

According to the fact that several students are 
overwhelmed by a large amount of compile errors 
when developing algorithm implementation (i.e. 
source code), a tool named Verificator (Radosevic, 
Orehovacki, & Lovrencic, 2009)incorporates a 
"traffic-light" system to limit the number of 
compile errors. Students are forced to compile their 
code every N modifications and they can only 
continue to write code if their code is successfully 
compiled. In such manner, students will experience 
only a small amount of errors each time a source 
code being compiled.  

However, since limiting compile errors does 
not mean removing them completely, several tools 
replace conventional source-code-writing task with 
visual representation to avoid syntactic errors. 
Students are encouraged to drag-and-drop several 
components to generate source code (i.e. algorithm 
implementation). Each time a component is added, 
students should provide necessary information for 
given component in limited input fields. In such 
manner, no syntactic errors will be produced at 
compile phase since all potential errors have 
already handled directly when adding each 
component. ProGuide (Areias & Mendes, 2007), 

Raptor (Carlisle, Wilson, Humphries, & Hadfield, 
2005), SFC editor (Watts, 2004), and Alice 
(Cooper, Dann, & Pausch, 2000) are several 
examples that fall into this category. Among these 
tools, Alice is the only work which incorporates 
fun as their major contribution. It enables student 
to learn algorithm implementation through 
interactive environments (e.g. 3D visualization and 
real-world object).Students can arrange their own 
algorithm based on provided instructions and see 
how their composed algorithm works in interactive 
manner. This kind of approach is inspired from 
other fun-based CS educational tool such as 
CeeBot4 (Anonymous, Learn Programming with 
Ceebot4, 2008) and KarelRobot (Buck & Stucki, 
2001), 

In more abstractive manner, several CS 
educational tools are focused on teaching 
algorithm in the form of algorithmic steps. 
Students are encouraged to understand algorithm 
by learning how that algorithm works step by step. 
These tools are frequently referred as Algorithm 
Visualization (AV) tools since they incorporate 
visualization as its main engagement form 
(Shaffer, et al., 2010; Halim, Koh, Loh, & Halim, 
2012; Christiawan & Karnalim, 2016; Jonathan, 
Karnalim, & Ayub, 2016). Nowadays, most AV 
tools are listed in AV portals such as AlgoViz 
(Anonymous, AlgoViz.org : The Algorithm 
Visualization Portal, 2009) and VisuAlgo (Halim, 
VisuAlgo, 2010). Students can access these portals 
through the Internet and utilize them to learn 
algorithms directly. However, due to varied 
university course need, several AV tools are also 
re-developed locally to match course syllabus 
(Christiawan & Karnalim, 2016; Jonathan, 
Karnalim, & Ayub, 2016). These tools frequently 
outperform standard AV tools in terms of its 
effectiveness due to its high-synchronization with 
course materials.  

Even though there are various algorithm-
centric CS educational tools, only a few of them 
that is focused on algorithm characteristics. Most 
of them are only focused on applying algorithm to 
solve a particular problem. GreedEx (Velázquez-
Iturbide & Pérez-Carrasco, 2009), 
GreedExCol(Debdi, Paredes-Velasco, & 
Velázquez-Iturbide, 2015), AP-SA (Jonathan, 
Karnalim, & Ayub, 2016), and Complexitor 
(Elvina & Karnalim, in press) are several AV tools 
which are focused on algorithm characteristics. 
Using algorithm characteristics, students are 
expected to determine why an algorithm is better 
than others for solving given problem.  

GreedEx is an educational tool for learning 
Greedy Algorithm characteristics in comparative 
manner. Students can explore how several greedy 
algorithms work, compare their respective output, 
and determine which greedy algorithm is the best 
approach for solving the given problem.  
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GreedExCol is an extended-version of GreedEx. It 
incorporates Computer-Supportive Collaborative 
System (CSCL), so that students can share and 
argue about their work in collaborative manner.  

AP-SA (Jonathan, Karnalim, & Ayub, 2016) is 
an AV tool for teaching various algorithm 
strategies. It incorporates case-based performance 
comparison as one of their core features, so that 
students can compare the characteristics of each 
algorithm and determine which algorithm is the 
best to solve the given problem. It incorporates 4 
algorithm strategies which are Brute Force, Greedy 
Algorithm, Backtracking, and Dynamic 
Programming. These strategies are implemented 
by involving two case studies which are 0/1 
Knapsack and Minimum Spanning Tree (MST) 
0/1. 

Complexitor (Elvina & Karnalim, in press) is 
an educational tool for learning algorithm time 
complexity in practical manner. This tool, at some 
extent, may enhance student understanding for 
selecting the best algorithm in terms of its time 
complexity. Students can calculate time 
complexity based on algorithm implementation 
(i.e. source code) and input set. Complexitor 
incorporates two measurements for calculating 
time complexity. These measurements are actual 
processing time and the number of involved 
instructions. The number of involved instructions 
is incorporated to calculate time complexity based 
on small input set. As we know, actual processing 
time may yield biased result on small input set due 
to hardware and operating system dependency.   

To our knowledge, there are no algorithm-
centric CS educational tool which covers Branch & 
Bound strategy and its characteristics. Branch & 
Bound is an optimization technique for solving 
state-space-search-based problem by incorporating 
heuristic and Breadth-First-Search (BFS) (Levitin, 
2012). It expands current branches in BFS manner 
till a feasible solution found and bounds all 
possible solution with higher heuristic than the 
feasible one. Even though this strategy is less 
popular than Greedy or Dynamic Programming 
(DP) strategy, it is still incorporated in various 
tasks such as Travelling Salesperson Problem 
(TSP) and N-Queens. Therefore, this strategy is 
considerably important to be understood by CS 
students.  

This paper proposes an educational tool for 
learning Branch & Bound through Visualization. It 
is named AP-BB which is an acronym of 
“educational tool for learning Branch & Bound” in 
Indonesian language. AP-BB is developed based 
on the fact that Branch & Bound strategy is quite 
difficult to learn among all algorithm strategies 
taught on Information Technology major in our 
university. This finding is deducted based on our 
informal observation of student tests on 
Algorithmic Strategy course from academic year of 

2014/2015 and 2015/2016. Most students fail to 
answer Branch & Bound problem correctly.  

In order to provide a concrete example for 
representing the impact of Branch & Bound 
strategy, our work incorporates TSP as its case 
study. TSP is a Non-Polynomial problem which 
asks the shortest Hamilton circuit from given cities 
based on its distance (Levitin, 2012). Hamilton 
circuit refers to a cycle traversing all nodes in 
graph once (i.e. cities) that starts and ends on the 
same city. Furthermore, our work incorporates 
Brute Force as a baseline to draw out Branch & 
Bound characteristics. Both strategies are 
implemented for solving similar problem (TSP) so 
that they are comparable to each other. 

In general, AP-BB consists of four modules 
which are Brute Force solving visualization, 
Branch & Bound solving visualization, Reduced 
Cost Matrix (RCM) calculator, and case-based 
performance comparison. The first two modules 
are incorporated to learn TSP problem solving with 
Brute Force or Branch & Bound strategy; RCM 
calculator is incorporated to learn RCM calculation 
as Branch & Bound TSP heuristics; and Case-
based performance comparison is incorporated to 
analyze Branch & Bound characteristic when 
solving a particular TSP case. These characteristics 
are expected to enhance student understanding 
further about Branch & Bound strategy and its 
characteristics. 

III. AP-BB DESIGN 

(Jonathan, Karnalim, & Ayub, 2016) proposes 
five major features for learning algorithm strategy. 
These features are solving visualization, case-
based performance comparison, file conversion, 
input generator, and language preference. Among 
these features, AP-BB only incorporates the first 
three features. Input generator and language 
preference are excluded based on following 
reasons: 1) Input generator is not required in AP-
BB since our input set is preferably small. We limit 
our input set into TSP with 6 cities to keep the 
clarity of our visualization and solving steps. As 
we know, Branch & Bound strategy is quite 
complex and difficult to understand, especially for 
solving large input set; 2) Language preference is 
not required in AP-BB since our tool is developed 
using student’s native language (i.e. Indonesian 
language). Thus, there will be no language barrier 
on student learning process.  

Solving visualization in AP-BB is split into 
three modules which are Brute Force solving 
visualization (BFSV), Branch & Bound solving 
visualization (BBSV), and Reduced Cost Matrix 
calculator (RCMC). BFSV and BBSV are 
incorporated for learning TSP problem solving 
with Brute Force or Branch & Bound strategy 
respectively. Whereas RCMC is incorporated for 
learning RCM calculation which is required for 



Branch & Bound TSP problem solving. Even 
though RCM calculation is actually a part of 
Branch & Bound TSP problem solving, its module 
(RCMC) is separated with BBSV to simplify 
BBSV algorithmic steps. By assuming that 
students have already known 
RCM, BBSV can consider RCM calculation as a 
single algorithmic step. In other words, it may 
reduce visualized algorithmic steps and simplify 
the processes. Furthermore, all 
visualization modules are featured with file 
conversion, so that students can save provided 
algorithmic steps on a text file. This file can be 
used as a reference for further discussion about 
given algorithmic steps with other student.  

Case-based performance comparison (CPC) in 
AP-BB compares Branch & Bound with Brute 
Force strategy in terms of its performance 
characteristics. This module is represented as a 
separate module which is placed at the same level 
with solving visualization modules. Consequently, 
our AP-BB consists of four modules wherein three 
of them are solving visualization modules and one 
of them is case-based performance comparison. 

Our AP-BB main window can be seen on 
Figure 1 and Figure 2. Figure 1 represent
view whereas Figure 2 represents its view when 
running a module. AP-BB main window consists
of five sub-panels which are module selection, 
input form, control panel, visualization panel, and 
description panel. These sub-panels are referred as 
A, B, C, D, and E respectively on Figure 1. 
Module selection enables students to select which 
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modules they want to learn. For each module, 
students can provide input set through input form 
and start learning through visualization
visualization panel. However, t
understanding, each Visualization 
featured with supplementary information which 
can be seen on description panel. This information 
is expected to help students understand 
visualization at a particular state. Control panel 
enables students to control 
visualization. They can set the
replay the overall visualization, skip several 
visualization states, and return to previous 
visualization state. In addition, control panel is also 
featured with application tutorial
can adapt and incorporate AP
ease. 

A. Brute Force Solving Visualization (BFSV)

This module is incorporated to provide initial 
information about TSP default problem solving 
(i.e., Solving TSP with Brute Force). It generates 
all possible Hamilton paths and selects path with 
the lowest distance as its result. In order to 
synchronize our visualization with in
this module is visualized with logical tree which 
sample view can be seen in Figure 3. Each node 
represents current city whereas each edge 
represents distance required from current to next 
city. At the end of the visualization, solution path 
will be marked with green color. It starts from root 
as its initial city and ends on a leaf node as its 
destination. 

Figure 1.  AP-BB Default View 
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Figure 2.  AP-BB View When Running a Module 

 

 

Figure 3.  Brute Force Visual Representation 

B. Branch & Bound Solving Visualization (BBSV) 

This module is incorporated to learn Branch & 
Bound strategy in solving TSP. BFS traversal is 
incorporated till a feasible solution is found and all 
solution candidates with higher heuristic are 
automatically removed from consideration. Similar 
with BFSV, this module is also visualized with 
logical tree. Yet, logical tree in this module 
incorporates expand view to display RCM. Sample 
view of this module visual representation can be 
seen on Figure 4 whereas its expand view can be 
seen on Figure 5. Each node represents current city 
whereas each edge represents heuristic value 
required from initial to next city. For each node, 
students can view its RCM by clicking that node. 
After clicked, an expanded view will be shown 
displaying RCM value as seen on Figure 5.  

 

 

Figure 4.  Branch & Bound Visual Representation 

C. Reduced Cost Matrix Calculator (RCMC) 

This module is incorporated to learn RCM 
calculation based on given matrix. RCM is 

generated based on two-fold which are row and 
column reduction (Levitin, 2012). Row reduction 
starts from the first row to the last one. It reduces 
all elements on given row with its lowest value. 
For example, if a row consists of ∞, 20, 30, 10, and 
11, thus its reduced form will be ∞, 10, 20, 0, and 
1 since each element is reduced by 10 as its lowest 
value. Column reduction works similar with row 
reduction except that it works on column instead of 
row. It is conducted right after row reduction is 
completed. Visual representation incorporated in 
this module is a matrix which sample view can be 
seen on Figure 6. Gray cells represent matrix 
index; White cells represent matrix content; and 
INF represents infinity value (∞). During 
visualization, selected row/column will be colored 
yellow and its lowest value will be colored green 
for each reduction.  

 

 

Figure 5.  RCM View on Branch & Bound Visual 
Representation 

 

Figure 6.  RCM Calculation Visual Representation 
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D. Case-based Performance Comparison 

This module is incorporated to learn Branch & 
Bound characteristic when compared with Brute 
Force.  Based on given input set, characteristics for 
both strategies are recorded and displayed as 
standard table on visualization panel. In such 
manner, students can analyze and determine why 
Branch & Bound is better than Brute Force (i.e. 
default TSP solving mechanism). However, since 
Branch & Bound is an optimization technique to 
minimize execution time, characteristics 
incorporated in this module are limited to time-
based characteristics. These characteristics are 
best-case time complexity, worst-case time 
complexity, actual processing time, and the 
number of involved instructions. The first two 
characteristics are statically similar regardless of 
input set. They are displayed to provide theoretical 
foundation about both strategies. On the other 
hand, the latter two characteristics are dynamically 
changed depending on input set. Actual processing 
time is measured in nanoseconds whereas the 
number of involved instructions is measured based 
on executed processes for solving given problem. 
The number of involved execution is displayed 
together with actual processing time since actual 
processing time may yield biased result on small 
input set due to hardware and operating system 
dependency. The number of involved execution is 
calculated by embedding standard counter 
mechanism on algorithm implementation. This 
mechanism is inspired from Complexitor’s 
approach (Elvina & Karnalim, in press) for 
calculating time complexity in practical manner.    

IV. EVALUATION 

In order to prove the effectiveness of our tool, a 
qualitative evaluation is conducted to 20 
undergraduate students from Faculty of 

Information Technology, Maranatha Christian 
University, Indonesia. Respondents are asked to 
answer 13 questionnaire statements on 7-points 
Likert scale (1 represents strongly disagree; 2 
represents disagree; 3 represents negative neutral; 
4 represents neutral; 5 represents positive neutral; 
6 represents agree; and 7 represents strongly 
agree). However, to keep the validity of our 
evaluation, respondents are limited to students that 
have already taken Algorithmic Strategy course in 
their previous semesters. Algorithmic Strategy is a 
CS-based course which includes Branch & Bound 
strategy as one of its syllabus material. In such 
manner, all respondents are guaranteed to have 
known Branch & Bound strategy in general. This 
prior knowledge is required since AP-BB assumes 
that students have already known several 
algorithm-strategy terminologies such as node, 
edge, and heuristics.  

The detail and result of our qualitative 
evaluation can be seen on Table I. For 
convenience, each statement is assigned with 
unique ID and will be referred as its ID at the rest 
of this paper. In addition to average score, each 
questionnaire statement is also featured with its 
standard deviation. Low standard deviation means 
that most given scores are around its average score. 
In other words, most respondents have similar 
perspective toward given statement. 

Q1 and Q2 are incorporated to observe Brute 
Force and Branch & Bound difficulty based on 
student’s perspective. According to Table I, our 
respondents tend to positively agree that Branch 
&Bound is difficult to understand (Q2 > 5). In 
addition, according to its low standard deviation, it 
can also be stated that most respondents have 
similar perspective about it. This finding indirectly 
strengthens our informal observation result 
described in Related Works. Branch & Bound is 

TABEL 1. QUESTIONNAIRE STATEMENTS AND ITS RESULT 

ID Statement 
Averaged 

Score 
Standard 
Deviation 

Q1 Brute Force strategy for solving TSP are difficult to understand 3.6 1.729 

Q2 Branch & Bound strategy for solving TSP are difficult to understand 5.05 1.146 

Q3 Visualization helps students to learn Brute Force strategy for solving TSP 6.05 1.191 

Q4 Visualization helps students to learn Branch & Bound strategy for solving TSP 5.75 1.099 

Q5 Dynamic input helps students to learn Brute Force strategy for solving TSP 5.05 1.517 

Q6 Dynamic input helps students to learn Branch & Bound strategy for solving TSP 5.8 1.105 

Q7 RCM calculator helps students to learn Branch & Bound strategy for solving TSP 5.95 0.826 

Q8 
Case-based performance comparison is effective to analyze Branch & Bound 
characteristics and exploit its benefits 

5.8 1.056 

Q9 
The number of involved instructions in case-based performance comparison helps 
students to understand how time complexity works 

5.45 1.191 

Q10 AP-BB UI fulfills user necessity in terms of learning Branch & Bound strategy 6.2 1.005 

Q11 
AP-BB functionality fulfills user necessity in terms of learning Branch & Bound 
strategy 

6.05 0.887 

Q12 AP-BB tutorial is declarative 5.6 1.603 

Q13 In general, AP-BB helps students to learn Branch & Bound strategy 6.25 0.786 
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quite difficult to learn when compared with other 
strategies. On the contrary, our respondents tend to 
disagree that Brute Force is also difficult to 
understand (Q1 < 4). This finding is natural since 
Brute Force is a naive approach which directly 
solves the problem. Thus, its algorithmic steps are 
simpler than Branch & Bound. Despite of its 
simpler algorithmic steps, Brute Force is still 
perceived as a difficult strategy for several 
students. 2 of 20 respondents are agreed that Brute 
Force is a difficult strategy (Q2 ≥ 6) whereas 4 of 
them tend to agree about its difficulty (Q2 > 5). 
This score variance yields high standard deviation 
for Q2. It yields1.729 of standard deviation which 
is quite high compared to standard deviation of 
other questionnaire statements.  

 Q3-Q6 are incorporated to evaluate the impact 
of AP-BB engagement on enhancing student 
understanding. AP-BB incorporates two 
engagement forms extracted from Naps 
Engagement Taxonomy (Naps, et al., 2003). These 
engagements are viewing and constructing. 
Viewing is implemented as solving visualization 
whereas constructing is implemented as dynamic 
inputs. In general, both viewing and constructing 
yield positive feedbacks. All statements yield an 
average score higher than 5 (tends to agree). 
Visualization (Q3-Q4) yields high impact for our 
respondents (average score is around 6) since most 
respondents are visual learners. They rely heavily 
on what they see when learning something. 
Constructing for learning Branch & Bound yields 
more positive feedbacks than constructing for 
learning Brute Force since Branch & Bound is 
more difficult to understand. Most respondents feel 
that they are required to try the algorithm multiple 
times with various inputs to understand how that 
algorithm works. 

Q7-Q9 are incorporated to evaluate the impact 
of RCM calculator and case-based performance 
comparison. Q7 is incorporated to evaluate the 
impact of RCM calculator; Q8 is incorporated to 
evaluate the impact of case-based performance 
comparison for learning Branch & Bound 
characteristics; and Q9 is incorporated to evaluate 
the impact of displaying the number of involved 
instruction for learning time complexity in Brute 
Force and Branch & Bound. In general, all 
statements yield positive feedbacks since its 
average score is higher than 5with low standard 
deviation. Thus, it can be stated that most 
respondents tend to agree that RCM and our case-
based performance comparison enhance student 
understanding. In addition, most respondents have 
similar perspective about it, since Q7-Q9 yield low 
standard deviation. 

Q10-Q13 are incorporated to evaluate standard 
application aspects on AP-BB. Q10 is incorporated 
to evaluate application UI; Q11 is incorporated to 
evaluate application functionality; Q12 is 

incorporated to evaluate how declarative the given 
tutorial; and Q13 is incorporated to evaluate 
overall system for learning Branch & Bound 
strategy. Most respondents agreed that our 
application UI and functionality fulfill user 
necessity for learning Branch & Bound strategy. 
This finding is extracted from Q10 and Q11 
average score which is higher than 6 (tends to 
strongly agree) with low standard deviation. Q12 
yields average score lower than 6 since our tutorial 
contain fewer images for visual representation. 
Most of our respondents are visual learners who 
rely heavily on visual image. Thus, our textual 
information on tutorial is not sufficient enough for 
them. They require several visual images to learn 
the material with ease. However, our tutorial still 
yields positive feedbacks by respondents since its 
average score is still higher than 5 (tends to 
agree).When perceived as the whole application, 
AP-BB may help student to learn Branch & 
Bound. This finding is resulted from Q13 
statement which yields the highest average score 
among all questionnaire statements. In addition, it 
also yields the lowest standard deviation which 
indirectly state that the most respondents have 
similar positive perspective about our AP-BB. 

V. CONCLUSION AND FUTURE WORKS 

We have proposed AP-BB, an educational tool 
for learning Branch &Bound strategy and its 
characteristics. This tool is developed based on our 
informal survey which indirectly states that Branch 
& Bound strategy is quite difficult to understand, 
especially for undergraduate students. This finding 
is also strengthened by Q2 questionnaire result 
where most respondents tend to agree about 
Branch & Bound difficulty. 

In general, AP-BB incorporates two user 
engagements which are viewing and constructing. 
Both engagements yield positive feedbacks from 
our respondents since they agreed that these 
components may help students for learning Branch 
& Bound (Q3-Q6). In terms of its features, AP-BB 
consists of four modules which are Brute Force 
solving visualization, Branch & Bound solving 
visualization, Reduced Cost Matrix (RCM) 
calculator, and case-based performance 
comparison. According to our qualitative 
evaluation (Q3-Q9), these modules, at some extent, 
help student to learn Branch & Bound strategy and 
its characteristics. Students can learn how Branch 
& Bound strategy works on a particular problem 
and compare its impact with standard algorithm 
benchmark (Brute Force strategy).In addition, AP-
BB has also fulfilled standard application aspects 
such as UI and functionality for learning Branch & 
Bound. This finding is based on our qualitative 
evaluation (Q10-Q13) where most respondents 
tend to agree about its fulfillment. 
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For further research, a controlled experiment of 
AP-BB will be conducted on Algorithmic Strategy 
course in our university. We want to evaluate the 
impact of this tool based on student grade 
improvement and in-class behavior. In addition, we 
also intend to incorporate more engagements from 
Naps Engagement Taxonomy so that our tool may 
enhance student understanding further. 
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