

A Low-Level Structure-based Approach for

Detecting Source Code Plagiarism

Oscar Karnalim

Abstract—According to the fact that source code plagiarism

is an emerging issue in Computer Science programming courses,

several source code plagiarism detection approaches are

developed. One of them is Karnalim’s approach, an approach

which detects plagiarism based on low-level tokens. This paper

proposes an expansion of such approach by incorporating three
contributions which are: flow-based token weighting; argument

removal heuristic; and invoked method removal. Flow-based

token weighting aims to reduce the number of false-positive

results; argument removal heuristic aims to generate more-

accurate linearized method content; and invoked method
removal aims to fasten processing time. According to our

evaluation, three findings can be deducted about proposed

approach. Firstly, advantages provided by our proposed

approach are prominent in both controlled and empirical

environment. Secondly, our proposed approach outperforms
Karnalim’s and state-of-the-art approach in terms of time

efficiency. Finally, our approach is moderately effective to

handle plagiarism attacks in practical environment.

Index Terms—plagiarism detection, source code, low-level

language, java, bytecode

I. INTRODUCTION

LAGIARISM is an act for reusing other people’s work

without acknowledging them as its original author(s)

beforehand [1, 2, 3]. In undergraduate Computer Science (CS)

major, it emerges as a serious issue since most assignments are

conducted electronically. A student coursework can be easily

copied and pasted as a new one in a no time. Moreover, since

plagiarists are not only limited into weak students [4],

detecting this illegal behavior will require a lot of effort.

Plagiarized source code might contain complex plagiaris m

attacks and deciding its originality usually takes a

considerable amount of time. Regarding to these issues , an

automatic plagiarism detection approach is highly desirable to

extenuate lecturer effort for detecting such plagiaris m

manually.

Source code plagiarism is a specific plagiarism issue

which comes into source code domain. When compared to

plagiarism on other domains, we would argue that this issue is

the most prominent one on CS majors based on twofold. On

the one hand, source code is the most frequent representation

that is used to complete CS assignments [5]. Such finding is

natural since programming is one of the core topic in CS and

Manuscript received April 05, 2017; revised October 04, 2017. This work was
supported by Maranatha Christian University, Indonesia.
Oscar Karnalim is with Faculty of Information Technology, Maranatha
Christian University, Indonesia (email: oscar.karnalim@it.maranatha.edu;
ORCID: http://orcid.org/0000-0003-4930-6249).

most programming courses usually ask student to submit

source codes to complete weekly assignment. On the other

hand, source code is a potential to-be-plagiarized

representation. Such finding is deducted from the fact that

most source code assignments are graded using an auto-grader

[6] instead of human evaluator and tricking such system is

easy as long as the students know how it works.

To handle such prominent issue, this paper proposes a

source code plagiarism detection approach that relies on low-

level representation, which is Bytecode, an executable code

for Java programming language. In fact, such form has been

frequently used in various research tasks such as software

watermarking [7], software retrieval system [8], software

keyphrase extraction [9], and virtual machine optimization

[10]. Our approach is extended from Karnalim’s approach

[11] by incorporating threefold: flow-based token weighting,

argument removal heuristic, and invoked methods removal.

These additional features are expected to generate higher

effectiveness and efficiency for low-level approach.

II. RELATED WORKS

When detecting source code plagiarism, most approaches

are classified into two categories which are attribute-based and

structure-based approach [12]. Attribute-based approach

detects plagiarism by comparing key properties from given

source codes whereas structure-based approach detects

plagiarism by comparing source code ordinal structure. It is

important to note that such classification is not agreed by all

researchers. Some of them claim that text-based approach

should be added beside both approaches [13, 14, 4]. According

to their perspective, such approach should be explicitly

defined since it does not take source code features into

consideration. It only treats source code as a raw text during

its process. Yet, we would argue that, in terms of

methodology, such approach can still be considered as either

attribute-based or structure-based approach. Therefore, in this

section, all implementations of text-based approach will be

mapped to the first two approaches: attribute-based and

structure-based approach.

Attribute-based approach (ABA) extracts key properties

from source codes and compares them to each other for

detecting plagiarism. Two or more source codes are

considered as plagiarized to each other iff these source codes

yield similar key properties . Earlier work of this approach is

conducted by Ottenstein using software science metrics [15].

However, since key properties in his work are not sufficient to

represent source code characteristics , additional properties,

such as the number of variables, methods, loops, conditional

statements, method invocations, and programmer style

P

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

behavior, are introduced on further works about ABA [16, 17,

12, 18, 19, 20].

According to the fact that most plagiarized codes do not

share exactly-similar characteristics toward their original

code, several ABAs incorporate approximate characteristic-

matching instead of the exact one. In such manner, detected

plagiarism is not only limited to verbatim copy but also

partially-similar copy. Generally speaking, such approximate

matching is adapted from threefold: Information-Retrieval

(IR), Machine Learning (ML), and domain-specific

measurement. Firstly, IR-based matching defines similarity

based on standard IR similarity algorithms. Two works which

utilize such matching are Ramirez-de-la-Cruz et al’s work

[21], which incorporates Cosine Similarity, and Cosma &

Joy’s work [22], which incorporates Latent Semantic

Analysis. Secondly, ML-based matching defines similarity

based on classification and clustering algorithm. Two works

which utilize such matching are Bandara & Wijayarathna’s

work [19], which combines three classification algorithms for

deducting similarity, and Jadalla & Elnagar’s work [23],

which defines similarity based on similar cluster. Finally ,

domain-specific matching defines similarity based on domain-

specific similarity measurement. Two works which utilize

such matching mechanism are Merlo’s work [24], which

incorporates spectral similarity, and Smeureanu & Iancu’s

work [25], which incorporates graph similarity.

Structure-based approach (SBA) detects plagiarism based

on ordinal structure similarity. Two or more source codes are

considered as plagiarized to each other iff these source codes

share similar structure. Typically, this approach is more

accurate than ABA even though it takes longer processing

time. In general, structure similarity in such approach is

determined based on two phases. First of all, source codes are

converted into intermediate representation such as source code

token [26, 1, 27, 16, 28, 29], compiler-based representation

[30, 31, 32], or low-level token [33, 34, 35, 11, 4]. Afterwards,

tokens from two source codes will be treated as two sequences

and then compared using string matching algorithm such as

Rabin-Karp Greedy String Tiling (RK-GST) [36], Winnowing

Algorithm [37], and Local Alignment [38].

Source code token refers to lexical token extracted from

source code using programming-language-specific lexer and

parser. Such representation has been implemented in

numerous works [26, 1, 16, 28, 29], including publicly

available plagiarism detection tools [27, 37, 36], since it can

be generated easily in a no time. However, despite its

popularity, we would argue that such representation is weak

against high level plagiarism attacks such as modifying

control flow and encapsulating instructions as methods.

Compiler-based representation refers to an intermediate

form which is tightly-related with compiler processes. To the

best of our knowledge, there are three works which explicit ly

use such representation. These works are Chilowics et al’s

work [31], which incorporates syntax tree, Ellis & Anderson’s

work [32], which incorporates inorder-linearized parse tree,

and Chilowics et al’s work [30], which incorporates call graph

and information metrics.. Even though compiler-based

representation is more effective than source code token for

detecting similarity, such representation usually takes

numerous processes to be generated, especially when given

programming language grammar is rather complex.

Low-level token refers to the content of executable file that

is resulted from compiling source code. We would argue that

such representation is more effective and efficient when

compared to other representations since low-level

representation typically contains only semantic-preserving

instructions and most syntactic sugars on that form are

automatically translated into its original form [11, 4].

Generally speaking, related works that incorporate low-level

tokens can be classified into twofold: works that are focused

on Java programming language and works that are focused on

.NET programming languages. On the one hand, works that

are focused on Java programming language was initiated by Ji

et al [35]. They extract low-level tokens, which is Java

bytecode in their case, from source code executables and

compare them directly using string similarity algorithm. Their

work, at some extent, is extended by Karnalim [11] with

several new contributions such as recursive-handled method

linearization, instruction generalization, and instruction

interpretation. On the other hand, works that are focused on

.NET programming languages was initiated by Juričić [33].

He detects source code plagiarism by converting source codes

into Common Intermediate Language (CIL) tokens and

determining their similarity using Levenstein distance. Juričić

et al [34] and Rabbani & Karnalim [4] then extend his work

by replacing its similarity algorithm and modifying minor

features.

Instead of utilizing only either ABA or SBA for detecting

source code plagiarism, three works combine both approaches

in order to get more accurate result. Firstly, Menai & Al-

hassoun [39] displays source code similarity from both ABA

and SBA at once as its result. Such displayed results are

expected to help users for determining plagiarized codes

according to given assignment. If given assignment allows a

little modification, users can rely on ABA’s result. Otherwise,

they can rely on SBA’s result. As we know, ABA is less

sensitive than SBA for detecting plagiarism. Secondly, Engels

et al [40] incorporates MOSS similarity result, which is a

result from SBA, as one of its learning feature to classify

whether two source codes are plagiarized to each other. The

classification itself is determined based on 12 attributes and

could be roughly classified into ABA. Finally, Ohno & Murao

[41] combines programming style and structural similarity to

determine plagiarism. A source code is considered as a

plagiarized code iff its programming style is significantly

different with programming style found on previously

submitted assignments and its structure is similar to other

source code. In their case, programming style is determined

using ABA whereas structural similarity is determined using

SBA.

At some points, both ABA and SBA are not combined to

get more accurate result. Yet, it aims for more efficient

processing time by sacrificing its accuracy. Such approach is

typically implemented on large-scale source code repositories

where pure SBA is not applicable since it will take a lot of

processing time. The work of Burrows et al [14] is an example

which falls into this category. It incorporates ABA and SBA

as two layers for determining plagiarism. ABA is conducted

to select initial plagiarism candidates whereas SBA is

conducted to revalidate candidates given by ABA. In such

manner, processing time required for detecting plagiaris m

may be lower than pure SBA since not all source codes are

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

compared using SBA. However, it may also yield lower

accuracy than pure SBA since not all potential candidates

could be detected through ABA as its first layer. Mozgovoy et

al [42], at some extent, shares similar idea with Burrows et al

except that they incorporate different ABA and SBA.

According to the fact that SBA outperforms ABA in most

plagiarism cases [27, 16] and low-level tokens, at some extent,

only represent source code semantic, this paper extends low-

level SBA proposed by Karnalim [11] for detecting source

code plagiarism. It is preferred to other low-level SBAs since

his work has considered many aspects for detecting plagiarism

(e.g. recursive-handled method linearization). It is important

to note that our work does not focus on the combination of

ABA and SBA directly since we believe that a well-developed

SBA may also indirectly enhance the effectiveness of such

combined form. Such combination will be observed further on

other works.

Karnalim’s work [11] is extended by incorporating

following contributions: 1) Flow-based token weighting is

introduced to generate more-sensitive result; 2) Argument

removal heuristic is introduced to generate more-precise

method linearization; and 3) Invoked method removal is

introduced to fasten processing time. These contributions are

expected to enhance the effectiveness and efficiency of current

state-of-the-art of low-level approach, which is Karnalim’s

approach [11]. In terms of evaluation, our work will be

evaluated based on four aspects which are the effectiveness

toward controlled environment, the effectiveness toward

empirical environment, time efficiency, and qualitative

perspective. We would argue that these aspects could

comprehensively exploit the characteristics of our proposed

approach.

III. METHODOLOGY

A. Proposed System Flowchart

Our proposed low-level approach detects source code

plagiarism by following system flowchart given on Fig. 1.

Such flowchart is generalized from Rabbani & Karnalim’s

work [4] to make it applicable to other low-level SBAs. In our

flowchart, detecting source code plagiarism is split into

twofold, which are compilation and comparison phase.

In compilation phase, each source code will be compiled

to its respective executable form. Even though this mechanism

seems to slow down execution time, Rabbani & Karnalim [4]

shows that it is still more efficient when compared to state-of-

the-art SBA that uses source code token representation. Low-

level form tends to have fewer tokens than its source code.

Thus, it will obviously generate fewer processes and shorter

time to detect plagiarism. In fact, this compilation phase could

be skipped if submitted assignments are formed as IDE-

generated projects. Most IDEs, such as Netbeans [43] or

Visual Studio [44], generate executable files and store it on

project directory each time source codes are compiled. Thus,

with an assumption that most students tend to compile their

code to recheck its correctness, IDE-generated executable files

can be considered as a replacement of compilation phase

result.

In comparison phase, all source codes are compared to

each other in either low-level or source code token format. On

the one hand, low-level token format, which will be generated

by low-level token extraction, will be used when both

compared source codes successfully generate low-level codes.

On the other hand, source code token format, which will be

generated by source code token extraction, will be used when

at least one of the compared codes are uncompilable. In such

manner, our flowchart can still detect plagiarism on

uncompilable source codes, even though its similarity result

may not be as sensitive as the low-level one. After measured,

all pairs which similarity exceeds plagiarism threshold will be

returned as our flowchart output.

Fig. 1. Proposed Flowchart for Detecting Source Code Plagiarism

In our implementation, we apply several modifications on

given flowchart as follows: 1) Our work is focused on Java

programming language with Bytecode as its low-level form

since we expand Karnalim’s work [11]; 2) Similarity

measurement is implemented based on minimum matching

similarity [45], using RK-GST algorithm with 2 as its

Minimum Matching Length (MML); 3) Our work does not

define plagiarism threshold as a static constant since such

threshold might be varied per case, regarding to assignment

difficulty and possible applied plagiarism attacks. We will

leave the decision of the best plagiarism threshold to the user;

4) Source code token extraction is conducted using ANTLR

[46] and grammar listed on ANTLR GitHub repositories [47];

and 5) Source code similarity measurement naively considers

each source code as a long token sequence.

B. Low-level Token Extraction

For each executable file from source code, its low-level

tokens are extracted through five sequential phases (which

detail can be seen on Fig. 2): 1) Raw low-level tokens are

extracted from executable file and grouped per method

through method content extraction; 2) All tokens are weighted

based on their execution probability and number of containing

loop through flow-based token weighting; 3) Tokens which

invoke recursive method will be removed through recursive-

method invocation elimination; 4) Tokens which invoke non-

recursive method will be replaced with their respective

invoked-method content through method linearization; and 5)

The contents of methods that have been invoked on other

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

methods are removed from low-level tokens through invoked

method removal.

Fig. 2. Low-level Token Extraction Phases

It is important to note that our low-level token extraction

is extended from Karnalim’s work [11] by modifying method

linearization and incorporating two new phases, which are

flow-based token weighting and invoked method removal.

These new or modified phases are expected to enhance the

effectiveness and efficiency of our proposed source code

plagiarism detection.

C. Method Content Extraction

This phase is responsible to extract low-level tokens from

executable file, which is a set of class files in our case. Low

level tokens are extracted using Javassist [48, 49, 50] where

tokens for each extracted method will be reinterpreted and

generalized based on Karnalim’s work [11]. It is important to

note that both reinterpretation and generalization are

conducted to reduce the impact of over-technical

implementation on low-level code. According to Karnalim’s

work [11], such over-technical implementation might reduce

the accuracy of low-level approach since some source code

fractions can be converted into more than one low-level

representation regarding to its technical circumstances.

D. Flow-based Token Weighting

This phase is responsible to weigh each token based on

Control Flow Graph (CFG). In general, each token would be

assigned with two weight constants which are execution

probability and the number of containing loop. Execution

probability refers to the possibility of given token to be

executed based on method content’s CFG. It is represented as

floating value between 0 to 1 inclusively where 0 refers to

"never be executed" and 1 refers to "always be executed ". On

the contrary, the number of containing loops represents how

many loops are responsible for executing given token. It is

represented as a non-negative number which is assigned as 0

by default. Such default value means that no loop contains

given token.

A brief example about how flow-based token weighting

works can be seen on Table I. On such example, a pseudo-

code of linear search algorithm is weighted based on execution

probability and the number of containing loops . On the one

hand, execution probability for most lines are assigned as 1,

which means that such line will always be executed regardless

of its input. Line 9, 11, and 13 are the only lines which

probability is not 1. They are assigned with 0.5 since they only

have 50% execution chance. They are only executed if given

condition from their respective previous lines (line 8, 10, and

12) has been fulfilled. On the other hand, the number of

containing loops for most lines are assigned as 0 since they are

not placed under a loop. Line 3, 4, 7, 8, and 9 are exceptional

since they are assigned with 1 as its number of containing

loop. Such constant means that these lines are placed under a

loop.

TABLE I

FLOW-BASED TOKEN WEIGHTING ON LINEAR SEARCH ALGORITHM

Line Algorithm Execution
Probability

The
Number of
Containing

Loops

1 n = input() 1 0

2 lst = new Array() 1 0

3 for i to n do 1 1

4 lst[i] = input() 1 1

5 s = input() 1 0

6 idx = -1 1 0

7 for i to n do 1 1

8 if lst[i] = s do 1 1

9 idx = i 0.5 1

10 if idx = -1 do 1 0

11 print("not found") 0.5 0

12 else 1 0

13 print("found") 0.5 0

To assign weight constants for each token, our work

extends Karnalim & Mandala’s weighting mechanism that

generates CFG from regular sequence, goto, switch-case, and

exception flow [8]. Execution probability for each token is

assigned based on pseudo-execution toward resulted graph

whereas the number of containing loops is assigned based on

the number of detected nested loop. However, in our work, we

simplify nested loop detection mechanism since our work

needs no information about loop type. The simplified

implementation of such mechanism works as follows:

a) Generate all possible Strongly-Connected

Components (SCC) from given CFG using Tarjan’s

algorithm [51].

b) For each SCC, increment the number of containing

loop on each of its token.

c) Remove the first token for each SCC and do similar

procedures (from a to c) recursively only on

remaining SCC members,

d) Repeat until all SCC are processed.

Both weight constants will be used to enhance the

sensitivity of our proposed similarity measurement. When

comparing two tokens, our approach will not only compare

mnemonic but also weight constants. Two tokens are

considered as different tokens even though they share similar

mnemonic if they share different weight constants. In such

manner, resulted similarity would be more accurate, resulting

fewer false positive results.

For a broader view about improved sensitiveness through

flow-based weighting, we can see algorithm given on Table II

that contain three print-hello instructions. Logically, these

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

instructions should not be considered as similar to each other

since they are not always executed once each time the

algorithm is invoked. print-hello on line 2 will be always

executed once; print-hello on line 4 may be executed more

than once; and print-hello on line 6 only has 50% probability

to be executed. Using flow-weighting mechanism, those print-

hello instructions can be distinguished to each other, even

though they share similar mnemonic, since they share

different weight constants.

TABLE II

A CASE STUDY TO SHOW THE IMPACT OF FLOW-BASED WEIGHTING

Line Algorithm

1 s = input()

2 print("Hello")

3 for i to s do

4 print("Hello")

5 if s > 0 do

6 print("Hello")

Even though such weighting mechanism seems weak

against dummy-flow plagiarism attacks when perceived from

source code perspective, we would argue that such weighting

mechanism offers more benefits when implemented on low-

level forms. Compilation phase, which is used to convert

source code to low-level form, usually removes unnecessary

flows and optimizes them directly. Therefore, most dummy-

flow plagiarism attacks will be removed and have no impact

on low-level form. They only put some effects if applied flows

rely on user input or method parameter.

E. Recursive-Method Invocation Elimination

This phase is responsible to remove all recursive-method

invocation tokens from method content. Such tokens are

eliminated in this phase since these methods will yield endless

linearization processes at method linearization, the 4th phase

of low-level token extraction. This phase adapts Karnalim &

Mandala’s approach [8] which works in threefold. Firstly, all

method invocations are converted to directed graph where A

 B states that at least one token from method A invokes

method B. Secondly, Strongly-Connected Components (SCC)

from given graph are detected using Tarjan’s algorithm [51].

Finally, methods that are included on recursive SCC are

marked as recursive methods and all method invocation tokens

which invoke these methods are removed from method

contents.

F. Method Linearization

This phase is responsible to linearize method contents by

replacing all method invocations with their respective

invoked-method content. It is extended from Karnalim’s work

[11] by incorporating argument removal heuristic, a heuristic

that is able to approximately remove tokens for preparing

method invocation’s argument. According to Karnalim’s work

[11], such tokens are the main reason why his work is weak

against inlining and outlining method. Each time his approach

linearizes a method by replacing method invocation token

with its respective invoked-method content, tokens for

preparing such method’s argument are still remained, causing

numerous mismatched tokens.

In Bytecode, preparing arguments for a method invocation

is usually implemented by pushing values to runtime stack

wherein the number of pushed values is typically similar with

the number of method’s parameters. Therefore, our heuristic

is implemented by simply removing N tokens before such

invocation where N represents the number of invoked

method’s parameters. It is important to note that object caller

reference, which is implicitly embedded as an additional

parameter for non-static method invocation, is also considered

as a method parameter in our work. Consequently, when a

non-static method is invoked, N will be assigned as the

number of explicit method parameter + 1.

In fact, our heuristic is not always accurate, especially for

handling arguments that involve additional operations such as

arithmetic operation, method invocation, or object creation.

These arguments might generate more than one token per

argument since their value is resulted from other process and

that process might be represented as numerous tokens,

resulting inaccurate argument detection for our heuristic.

However, since detecting such tokens accurately will take a

considerable amount of processing time, we exclude it from

our consideration and just simply focus on the regular ones.

Several examples of tokens for preparing arguments in

Bytecodes can be seen in Table III where each example is

assigned with a unique ID that starts with C. These examples

are generated to provide a brief explanation about why our

proposed heuristic will work accurately on most cases. Firstly,

for handling C01 and C02, our heuristic will accurately

TABLE III

T HE EXAMPLES OF TOKENS FOR PREPARING ARGUMENTS

ID Method Invocation Generated Bytecode Tokens for Preparing

Arguments

C01 foo(); {static method that is invoked on its own class}

C02 Class.foo(); {static method that is invoked on other class}

C03 obj.foo(); {object method} ref_load

C04 foo(5); {static method with an argument} numeric_const

C05 foo(5,3); {static method with two arguments} numeric_const, numeric_const

C06 foo(a,b); {static method with primitive arguments} primitive_load, primitive_load

C07 foo(a,b); {static method with reference arguments} ref_load, ref_load

C08 foo(a,b-2); {static method with arithmetic operation as its argument} primitive_load, primitive_load

numeric_const, substraction

C09 foo(foo2(x)); {static method with another static method invocation as its

argument}

primitive_load, invoke_method_foo2,

primitive_load

C10 foo(new Object()); {static method with object initialization as its argument} new, dup, invoke_constructor

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

remove no token since both cases invoke static method

without parameter. Secondly, for handling C03, our heuristic

will accurately remove one token since invoked method is an

object method (i.e. non-static method). Thirdly, for handling

C04-C07, our heuristic will accurately remove one, two, two,

and two tokens respectively according to the number of

explicit method parameters. Finally, for handling C08-C10,

our heuristic will generate inaccurate number of removed

arguments. It will remove two, two, and one tokens

respectively, even though each method generates more tokens

for preparing arguments due to their additional operation. C08

generates 4 tokens since it requires to subtract b with 2; C09

generates 3 tokens since it requires to invoke foo2; and C10

generates 3 tokens since it requires to create a new object. We

would argue that such inaccuracy is natural since these three

cases incorporate additional operation while preparing their

argument.

Even though our heuristic is only able to accurately

remove tokens on seven of ten cases described in Table III, we

would argue that our heuristic is still considerably effective in

practice. We believe that the last three cases are seldom used

for obfuscating source code plagiarism since implementing

these attacks requires high programming skill, which is not

owned by most plagiarists.

G. Invoked Method Removal

This phase is responsible to remove the contents of

invoked methods from low-level tokens. Such mechanism

aims to speed up processing time on similarity measurement

by reducing the number of compared token. It is applied by

marking all methods that have been invoked on method

linearization, the 4th phase of low-level token extraction, and

remove contents related to these methods from low-level

tokens. It is important to note that such mechanism will not

affect the completeness of extracted tokens since the contents

of invoked methods are implicitly defined on invoker method

as a result of method linearization.

H. Low-level Similarity Measurement

Low-level similarity measurement defines similarity

degree by summing local similarities resulted from paired

method contents. We do not rely only on main method for

measuring similarity since not all programming assignments

are featured with main method (e.g. programming assignment

to complete methods on abstract data type). In general, our

similarity measurement works in threefold: 1) Low-level

tokens are grouped per containing method before comparison;

2) Methods from both codes will be paired to each other based

on their method signature similarity; and 3) Similarity value is

resulted by comparing the content for each method pair and

merging the result.

Firstly, low-level tokens for each source code are grouped

per their respective containing method before comparison.

Our work does not compare the whole tokens directly to speed

up processing time. Similarity algorithm in this work, which

is RK-GST, takes (𝑚𝑎𝑥(𝑁 , 𝑀))3 processes where N and M

are the number of tokens in compared source codes. Thus,

splitting tokens into smaller sub-sequences based on

containing method will reduce processing time significantly

since ∑ (𝑚𝑎𝑥(𝑁𝑖, 𝑀𝑖))3
𝑝
𝑖=1 < (𝑚𝑎𝑥(𝑁 , 𝑀))3 where p is the

number of methods; ∑ 𝑁𝑖
𝑝
𝑖=1 = N; and ∑ 𝑀𝑖

𝑝
𝑖=1 = M.

Secondly, methods from both codes will be paired to each

other based on their method signature similarity . This

mechanism is applied to speed up processing time by

assuming that most programming assignments force students

to follow a particular structure such as mandatory class and

method names. In general, our proposed pairing mechanism

works in twofold: 1) All possible pairs are ranked in

descending order based on their Inverse Levensthein Distance

(ILD). ILD is calculated as in (1) where dist(A,B) refers to

Levensthein distance between both strings, A is the first

method signature, and B is the second method signature. In

such manner, the number of differences between both

signatures will be inversely proportional to ILD. A method

pair which members share similar signature will be assigned

with a high score; and 2) Method pairs which member has

been occurred on higher rank are removed to avoid redundant

member on selected pairs.

ILD(A,B) =
1

𝑑𝑖𝑠𝑡 (𝐴,𝐵)+1
 (1)

Finally, after all method pairs with the most similar

signature have been selected, similarity degree is defined

based on (2) where A and B refer to compared codes; length(A)

and length(B) refer to the number of tokens in A and B

respectively; Pairs refers to selected method pairs; and

s(Pa,Pb) refers to the number of matched tokens between Pa

and Pb that is resulted from RK-GST algorithm. It is important

to note that, in our work, two tokens are only considered as

similar to each other if these tokens share similar mnemonic

and weighting constant (i.e. constants that have been

generated from flow-based token weighting, the 2nd phase of

low-level token extraction).

sim(A,B) =
∑ 𝑠(𝑃𝑎,𝑃𝑏)𝑃 ∈ 𝑃𝑎𝑖𝑟𝑠

∑ 𝑚𝑖𝑛 (𝑙𝑒𝑛𝑔𝑡ℎ (𝑃𝑎),𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑏))𝑃 ∈ 𝑃𝑎𝑖𝑟𝑠
 (2)

In fact, our similarity measurement is adapted from

Karnalim’s similarity measurement [11], an extended version

of minimum matching similarity [45] that is resistant against

dummy-based plagiarism attacks (e.g. incorporating dummy

statements, methods, or classes). However, we apply two

modifications on such measurement which are: 1) Method

signature similarity in Karnalim’s work [11] is replaced with

ILD. Even though both mechanisms yield similar behavior,

we believe that ILD is more intuitive since ILD score is

proportional to signature similarity. The higher its score, the

more similar both signatures will be. It is different with

Karnalim’s signature similarity where its score is inversely

proportional to signature similarity. The lower its score, the

more similar both signatures will be; and 2) A stricter rule is

applied for token similarity. Two tokens are considered as

similar to each other iff their mnemonic and flow-based

weighting constants are similar.

IV. CONTROLLED EFFECTIVENESS EVALUATION

This section aims to revalidate the advantages of our

proposed approach in a controlled environment. In general,

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

there are 11 advantages that will be evaluated. Eight of them

are adopted advantages of Karnalim’s approach [11], a

predecessor of our approach, while the other three are our new

advantages, which are flow-based token weighting, argument

removal heuristic, and invoked method removal. For each

advantage, artificial test case(s) which exploit such advantage

will be carefully designed and used to check whether such

advantage is prominent or not.

A. Evaluating the Advantages of Karnalim’s Approach

Based on Karnalim’s work [11], we have extracted 8

advantages of his approach which details including its

controlled evaluation cases can be seen on Table IV. For

convenience, each advantage will be assigned with a unique

ID that starts with KAR and each evaluation case will be

referred as EKAR + advantage ID + case number. All

evaluation cases are generated based on Karnalim’s original

source codes that were used to generate plagiarism attacks

[11]. These codes are extracted from Liang’s book [52] and

cover 7 programming materials which are Output, Input,

Branching, Loop, Method, Array, and Matrix. They will be

referred as ORIG1 to ORIG7 respectively.

In order to evaluate adopted advantages of KArnalim’s

Approach (KAA), the effectiveness of such approach will be

compared to Standard Lexical Token approach (SLT), a state-

of-the-art approach for detecting source code plagiarism. SLT

works by converting both source codes into lexical token

sequences, removing the comments, and comparing them to

each other using a particular similarity algorithm. However, to

simplify result justification in this evaluation, our SLT will use

similar similarity algorithm with KAA. It will use minimum

matching similarity [45], using RK-GST algorithm with 2 as

its MML.

In terms of measuring effectiveness, according to the fact

that low-level representation (in our case, Bytecodes) yields

fewer tokens than the source code itself [11, 4], comparing

both scenarios based on normalized similarity may be unfair.

One mismatched token on low-level approach (i.e. KAA) may

lower its normalized similarity significantly due to its short

token length. Therefore, a new similarity measurement which

does not rely heavily on token length is proposed for

comparison purpose. It is called Inverse number of

Mismatched Token (IMT) and resulted from (3). In general,

IMT works by negating the number of Mismatched Token

(MT) from both sequences (A and B). It will yield a non-

positive integer as its output which is ranged from -∞ to 0. The

higher IMT value generated from comparing two sequences,

the more similar these sequences are. However, it is important

to note that zero IMT (the highest possible IMT value) does

not mean that both sequences are exactly similar. It only

means that all tokens from shorter sequence are found on the

longer one, as it is known that MT for each case is generated

by subtracting the minimum length of both sequences with the

number of matched tokens.

IMT(A,B) =-1 * MT(A,B) (3)

Our work does not incorporate division-based inverse

mechanism (e.g. inverse mechanism as in our ILD) since we

intend to generate IMT distribution that has similar pattern as

in MT. In division-based mechanism, the distance between

points is not uniform and gets smaller when the given values

are extremely large. For example, suppose there are 3 values

which are 1, 2, and 3. If inversed in division-based manner,

delta value between the 1st and 2nd inversed value (1/1 - 1/2 =

1 - 0.5 = 0.5) will be not uniform with delta value between the

2nd and 3rd inversed value (1/2 - 1/3 = 0.5 - 0.33 = 0.17), even

though the distance of their original delta value is uniform.

Such inversing mechanism is quite different with our inverse

mechanism, which only negates the MT, since negation

operation will generate similar distance between points as in

MT regardless of point’s original position.

IMT result for each evaluation case from Table IV can be

seen in Fig. 3. Vertical axis represents IMT value for each case

whereas horizontal axis represents the evaluation cases. In

general, KAA tends to generate higher or equal IMT than SLT

TABLE IV
KARNALIM’S ADVANTAGES WITH THEIR CONTROLLED EVALUATION CASES

ID Advantage Evaluation Cases

KAR1 Proposed approach is not affected by
whitespace modification

By considering ORIG7 as original code, plagiarized code is generated by removing all whitespaces.
This case will be referred as EKAR11.

KAR2 Proposed approach is not affected by
comment modification

By considering ORIG7 as original code, plagiarized codes are generated by adding inline comment for
each statement. The number of inline comment will be increased per evaluation case from one to four
per statement. These cases will be referred as EKAR21 to EKAR24 respectively

KAR3 Proposed approach is not affected by

delimiter modification

By considering ORIG7 as original code, plagiarized codes are generated by adding extra semicolon for

each statement. The number of semicolon will be increased per evaluation case from one to four per
statement. These cases will be referred as EKAR31 to EKAR34 respectively.

KAR4 Proposed approach, at some extent, is

not affected by identifier renaming

For each Karnalim’s original source code except ORIG1, plagiarized codes are generated by renaming

all variable and method names. These cases will be referred as EKAR41 to EKAR46 respectively.
KAR5 Proposed approach is not affected by

semantically-similar syntactic sugar
replacement

By considering ORIG4 as original code, plagiarized codes are generated by replacing while syntax with
either for or do while syntax. These cases will be referred as EKAR51 and EKAR52 respectively.

KAR6 Proposed approach handles inlining
and outlining method

Original code is ORIG3 with all local variables are replaced with the global ones. Plagiarized codes are
generated by encapsulating statements into nested methods, starting from a simple method to 3-level
nested methods. These cases will be referred as EKAR61 to EKAR63 respectively.

KAR7 Proposed approach ignores dummy

methods

Original code is ORIG3 with all local variables are replaced with the global ones. Plagiarized codes are

generated by adding dummy method(s). The number of dummy method(s) will be increased per
evaluation case from one to three methods. These cases will be referred as EKAR71 to EKAR73
respectively.

KAR8 Proposed approach ignores dummy

global variables

By considering ORIG3 as original source code, plagiarized codes are generated by adding global object

variable(s). The number of global object variable(s) will be increased per evaluation case from one to
three variables. These cases will be referred as EKAR81 to EKAR83 respectively.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

in all cases. Therefore, it can be roughly stated that there is no

contradicting view about Karnalim’s advantages mentioned in

Table IV. Karnalim’s approach is, in general, more effective

than state-of-the-art approach (SLT) when evaluated in

controlled environment.

Fig. 3. Inverse Number of Mismatched Token Toward Evaluation Cases

Listed on Table IV

From cases about the first three advantages (EKAR11 to

EKAR34), both KAA and SLT yield zero IMT on all cases.

They are resistible to whitespace, comment, and delimiter

modification, regardless of how many modifications are

involved. On the one hand, KAA is resistible to such

modifications since it deducts similarity based on low-level

form (i.e. Bytecodes). It has excluded whitespace, comment,

and delimiter during compilation phase. On the other hand,

SLT is resistible to such modifications due to its excluding

mechanism and minimum matching similarity. Whitespace

and comment are handled by excluding them at conversion

phase whereas extra delimiters are handled by incorporating

minimum matching similarity that ignores extra tokens. Even

though both scenarios yield similar result, we would argue that

KAA is more effective than SLT for handling such

modification since KAA’s excluding mechanism is

implemented automatically in programming language

compiler. It need no additional effort for reimplementation.

From cases about identifier renaming (EKAR41 to

EKAR46), KAA is resistible to such attacks due to Bytecode’s

local variable renaming and method signature similarity .

Bytecode’s local variable renaming will rename all local

variables with technical names according to their sequential

order when the source code is compiled into Bytecodes. Such

mechanism enables KAA to handle identifier renaming on

local variables since both original and renamed variable name

will be replaced with similar technical name as long as they

firstly occur in similar ordinal position. Method signature

similarity, on the contrary, will consider two approximately -

similar method signatures as similar to each other as long as

such pair yields the highest ILD among related pairs . Such

mechanism, at some extent, could handle small modification

on method name, especially in our case. An evidence for this

case is KAA result on EKAR44, a case which plagiarized code

involves method name modification. It still generates zero

IMT since the method name is only modified by adding a

character as its additional postfix.

As seen in Fig. 3, SLT seems fluctuated in EKAR41 to

EKAR46 since SLT considers each renamed identifier as a

mismatched token and the number of renamed identifier in

each case varies. SLT fails to consider renamed identifier as a

match with its original form since it only distinguishes

identifier based on its mnemonic. Such issue, however, is

handled in KAA with local variable renaming and method

signature similarity. Thus, according to such finding, it can be

roughly stated that KAA is more effective than SLT for

handling identifier renaming.

From cases about semantically-similar syntactic sugar

replacement (EKAR51 and EKAR52), KAA outperforms

SLT in general since it yields higher IMT on one case while

generating similar IMT on the other one. On the one hand, in

EKAR51, KAA generates zero IMT since both while and for

syntax generate similar bytecode sequence due to their similar

semantic. Such high similarity, however, cannot be achieved

by SLT since SLT determines token similarity based on source

code form and both while and for syntax share different form.

On the other hand, in EKAR52, KAA cannot generate zero

IMT since while and do-while syntax do not share identical

semantic. By definition, both syntaxes actually generate

different control flow. while syntax checks the condition

before performing the action while do-while syntax do the

action once before checking the condition for future iteration.

Despite such unidentical generated control flow, KAA is still

as effective as SLT for handling such replacement.

From cases about inlining and outlining method (EKAR61

to EKAR63), both KAA and SLT yield zero IMT in all cases.

In other words, method encapsulation is handled well by both

scenarios, regardless of how many nested method

encapsulations are involved. SLT is able to generate high IMT

on such cases since it ignores pattern context at comparison

phase. It could detect similar pattern from any location of

given source codes. In our cases (EKAR61 to EKAR63), SLT

matches tokens from main method to tokens from

encapsulating method, resulting no mismatched tokens (i.e.

zero IMT). Such zero IMT is also achieved by KAA even

though it only determines similarity locally per method. When

observed further, KAA can generate such result thanks to its

method linearization. For each method body, method

linearization will replace each method invocation with its

respective method content. Consequently, even though several

instructions are encapsulated as a method and located

separately outside the compared method, KAA is still able to

consider encapsulated tokens as a part of compared method

body. We would argue that such phenomenon makes KAA

becomes more beneficial than SLT for handling method

encapsulation since it guarantees that the matched sequences

are from similar context.

From cases about dummy methods (EKAR71 to

EKAR73), KAA generates zero IMT for all cases since it only

determines similarity from paired methods and ignores all

dummy methods that has no matching pair in the original

code. SLT, on the contrary, should also yield similar result

thanks to minimum matching similarity. However, it generates

-1 IMT in all cases due to RK-GST limitation. A matched

subsequence with length 1 will be considered as a mismatch

since its length is shorter than MML (which is 2 in our case).

Therefore, we would argue that KAA is more beneficial than

SLT for handling dummy methods since it outperforms SLT

on such cases.

From cases about dummy global variables (EKAR81 to

EKAR83), both KAA and SLT yield zero IMT in all cases.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

Thus, it can be stated that dummy global variables have no

impact on both scenarios. On the one hand, KAA is resistible

to such attack since it only considers method content for

comparison. It automatically ignores all global variables. On

the other hand, SLT is resistible to such attack due to

minimum matching similarity. Using such matching

similarity, dummy global variables will be considered as extra

tokens that will be excluded before comparison. Despite

similar IMT results , we would argue that KAA is more

beneficial than SLT for handling dummy global variables

since it excludes such tokens before comparison phase,

resulting shorter token sequences for comparison.

By and large, it can be roughly stated that declared

advantages of KAA are prominent when compared to SLT.

However, it is important to note that not all prominences are

explicitly shown as higher IMT than SLT. Some of them are

shown implicitly by providing more beneficial characteristics

such as contextual similarity or faster processing time.

B. Evaluating the Advantages of Flow-based Token

Weighting

Flow-based token weighting aims to enhance the

sensitivity of Karnalim’s approach by considering control

flow weight while comparing token. Two tokens are only

considered as similar to each other iff its mnemonic and

control flow weight constants are exactly similar. To evaluate

such sensitivity, we incorporate two scenarios based on the

existence of such weighting mechanism. The first one, which

is referred as Weighted Low-Level approach (WLL), refers to

our proposed approach in this paper whereas the second one,

which is referred as Unweighted Low-Level approach (ULL),

refers to the proposed approach without flow-based token

weighting. We could state that flow-based token weighting

enhances the sensitivity of low-level approach iff WLL

outperforms ULL in terms of the number of Mismatched

Token (MT) toward our controlled evaluation cases , which

only modification is about changing token scope.

In general, controlled evaluation cases are generated based

on 7 original source codes that were used to generate

plagiarism attacks in Karnalim’s work [11]. For each original

source code, plagiarized codes will be generated in twofold.

On the one hand, some of them will be generated by moving

each variable declaration gradually to larger scope where each

movement is considered as a new plagiarized code. It will start

with the first variable declared in the source code and continue

to other variable right after the first variable reaches the global

scope. Evaluation cases generated in this manner are expected

to evaluate the sensitivity of flow-based token weighting

toward gradual slight token scope modification. These cases

will be referred as EFLA cases. On the other hand, some of

them will be generated by encapsulating the content of each

method with a 5-times-iteration traversal, that is represented

as a for syntax. Each original source code will generate one

plagiarized code through such mechanism. Evaluation cases

generated in this manner are expected to evaluate the

sensitivity of flow-based token weighting toward numerous

token scope modifications at once. These cases will be

referred as EFLB cases.

The detail of generated evaluation cases per original

source code can be seen in Table V. In general, there are 29

evaluation cases where 22 of them are generated based on

moving variable declaration (EFLA cases) and the rest of them

are generated based on 5-times-iteration traversal

encapsulation (EFLB cases). It is important to note that EFLA

cases are generated unevenly per original source code since

the number of declared variables in each original source code

varies.

MT result for EFLA cases from Table V can be seen in

Fig. 4. Vertical axis represents MT value for each case

whereas horizontal axis represents EFLA cases. In most cases,

both WLL and ULL generate zero MT, even though WLL is

expected to generate higher MT than ULL. Such phenomenon

is natural since most EFLA modifications are about moving

in-method outermost variable declaration to global variable

(i.e. class attribute). Therefore, since WLL assumes method

scope as the most outside influenced layer and global variables

are automatically included on such layer, WLL is insensitive

to such modifications, resulting similar MT as in ULL.

Nevertheless, WLL still outperforms ULL in 6 cases, which

are EFLA52, EFLA53, EFLA73, EFLA74, EFLA75, and

EFLA76, since it can detect the movement of a variable as a

mismatched token. In these cases, a variable declaration is

moved from loop body to its larger scope. Thus, since WLL

will generate different weight constants for token in and out of

a loop, WLL will consider moved variable declaration as

different token when compared to its original form.

According to the fact that plagiarized code for EFLA cases

are generated by moving variable declarations gradually per

scope, each case should generate higher MT than its

predecessor as long as both cases are originated from similar

source code. However, as seen in Fig. 4, some of them still

generate similar MT with its predecessor. Each approach has

its own cause for such phenomenon. On the one hand, in WLL,

some cases generate similar MT with its predecessor since the

number of scope-modified token on both cases are similar,

considering the fact that moving variable declaration does not

always change the number of scope-modified token,

TABLE V

ORIGINAL SOURCE CODES WITH THEIR GENERATED EVALUATION CASES

Original Source Code EFLA cases EFLB Cases

ORIG2 0 case since there is no variable declaration involved on such task. 1 case which will be referred as EFLB1.

ORIG2 4 cases which will be referred as EFLA21 to EFLA24 respectively. 1 case which will be referred as EFLB2.

ORIG3 5 cases which will be referred as EFLA31 to EFLA35 respectively. 1 case which will be referred as EFLB3.

ORIG4 1 case which will be referred as EFLA41. 1 case which will be referred as EFLB4.

ORIG5 3 cases which will be referred as EFLA51 to EFLA53 respectively. 1 case which will be referred as EFLB5.

ORIG6 3 cases which will be referred as EFLA61 to EFLA63 respectively. 1 case which will be referred as EFLB6.

ORIG7 6 cases which will be referred as EFLA71 to EFLA76 respectively. 1 case which will be referred as EFLB7.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

especially when such variable has been moved before.

EFLA53, with EFLA52 as its predecessor, is an example of

such phenomenon. On the other hand, in ULL, some cases

generate similar MT with its predecessor since variable

declaration involved in these cases generates more than one

token in low-level form and such tokens can be accurately

detected through RK-GST algorithm. EFLA22, with EFLA21

as its predecessor, is an example of such phenomenon.

Fig. 4. The Number of Mismatched Token Toward EFLA cases Listed on
Table V

MT result for EFLB cases from Table V can be seen in

Fig. 5. Vertical axis represents MT value for each case

whereas horizontal axis represents EFLB cases. ULL

generates zero MT on all cases since it ignores scope

modification. It considers token similarity only based on token

mnemonic. Therefore, since EFLB plagiarized codes are

generated by changing token’s scope through control flow

weight, ULL cannot differentiate plagiarized code from its

original code. WLL, on the contrary, generates fluctuated MT

results since the number of scope-modified tokens per case is

varied and all scope-modified tokens will be considered as

mismatches to their original form due to different flow-based

weight constants. In our case, all tokens inside 5-times-

iteration traversal in plagiarized code are considered as

mismatches to its paired token in original code since such

traversal changes the number of containing loop of given

tokens. It is important to note that incorporated 5-times-

traversal on plagiarized code is not considered as mismatched

tokens on both WLL and ULL due to minimum matching

similarity that automatically excludes extra tokens from

comparison.

Fig. 5. The Number of Mismatched Token Toward EFLB cases Listed on
Table V

To sum up, it can be roughly stated that flow-based token

weighting could enhance the sensitiveness of low-level

approach since WLL, an approach with such weighting, can

detect token scope modification in most cases while ULL, an

approach without such weighting, cannot detect given

modification in all cases. We would argue that such

sensitiveness is important to reduce the number of false

positive plagiarism result, as it is known that tokens in

different context should not be considered as similar to each

other, even though they share similar mnemonics.

C. Evaluating the Advantages of Argument Removal

Heuristic

Argument removal heuristic aims to enhance the

effectiveness of method linearization by removing remained

argument-preparation tokens for each method invocation. To

evaluate such mechanism, controlled evaluation cases which

plagiarism attack is about encapsulating statement(s) as

method(s) with various parameter(s) are generated. We expect

our heuristic to effectively exclude most remained argument-

preparation tokens on these cases.

In general, our controlled evaluation cases consist of 14

cases which are categorized into twofold: cases to simulate the

increasing number of argument and cases to simulate

argument preparation on various method invocations. On the

one hand, cases to simulate the increasing number of argument

consist of 4 cases, namely EARG01 to EARG04 respectively.

These cases are generated from ORIG3, a Karnalim’s original

source code which covers branching material, where its

respective plagiarism attack is generated by encapsulating

partial statements as a static method with zero to three

primitive-type parameters respectively. On the other hand,

cases to simulate argument preparation on various method

invocations consist of 10 cases, namely EARG05 to EARG14

respectively. These cases are generated from Hello World

program where each case is designed to simulate method

invocations defined in Table III (C1-C10) respectively.

For each case, we will check how many argument-

preparation tokens are removed as a result of incorporating

argument removal heuristic. Two scenarios will be taken into

consideration which are a scenario that involves argument

removal heuristic and a scenario that does not involve it. Both

scenarios are adapted from our proposed approach which

involves no flow-weighting mechanism, namely Unweighted

Low-Level approach (ULL). In fact, the result of given

heuristic is not affected by flow-weighting mechanism. Yet,

we choose to ignore such weighting mechanism so that the

reader could easily understand the heuristic’s benefit without

being confused with other aspects .

The number of removed argument-preparation token for

each evaluation case can be seen in Fig. 6. Vertical axis

represents the number of removed argument-preparation

token whereas horizontal axis represents the evaluated cases.

In general, the behavior of argument removal heuristic

matches perfectly with our expectation. It accurately removes

most argument-preparation tokens, resulting fewer tokens

involved in comparison phase.

The results of EARG01 to EARG04 show that increasing

number of argument can be handled with our heuristic. It

accurately removes argument-preparation tokens as many as

the number of argument. It removes no token at EARG01,

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

which involves no argument, and three tokens at EARG04,

which involves three arguments.

Fig. 6. The Number of Removed Argument-Preparation Token Toward
Cases Designed to Evaluate The Advantages of Argument Removal
Heuristic

The results of EARG05 to EARG14 show that our

heuristic works as expected toward method invocations

defined in Table III. It can accurately remove argument-

preparation tokens from 7 cases (EARG05 to EARG11) while

removing only some of them on the remaining 3 cases

(EARG12 to EARG14). On the one hand, our heuristic can

accurately remove such tokens on 7 cases since these cases

involve no additional operation while preparing the

arguments. These cases only generate one argument-

preparation token for each involved argument. On the other

hand, our heuristic can only remove some argument-

preparation tokens on remaining 3 cases since these cases

involve additional operation while preparing the arguments.

EARG12 put a reduction operation on the 2nd argument;

EARG13 put a method invocation as its argument; and

EARG14 put an object creation as its argument. The existence

of such additional operations violates our heuristic assumption

which claims that the number of tokens for preparing

argument will be in-sync with the number of method

parameter. Therefore, it is natural that our heuristic cannot

work properly on such cases.

By and large, according to our controlled evaluation, two

findings can be deducted. On the one hand, argument removal

heuristic can remove argument-preparation tokens correctly as

long as there is no additional operation involved while

preparing the arguments. These tokens can be removed

regardless of its form, either a direct constant, a primitive

variable, or even a reference variable. On the other hand,

incorporating additional operations in arguments might lead

our heuristic to remove only some of the argument-preparation

tokens. As it is known that most additional operations will

generate more than one token for each argument while our

heuristic only removes one token per argument. According to

these findings, we would argue that our heuristic could

enhance the effectiveness of method linearization since most

argument-preparation tokens are removed through given

mechanism.

D. Evaluating the Advantages of Invoked Method Removal

Invoked method removal aims to speed up processing time

on similarity measurement by removing the content of all

invoked methods from low-level tokens. To evaluate such

mechanism, controlled evaluation cases which plagiaris m

attack is about encapsulating main-method statement(s) as

method(s) are generated. For each case, its plagiarized code is

generated by encapsulating statement(s) on ORIG3 as

method(s) where one statement will be encapsulated as one

method. The number of encapsulated statement per case is

varied from 1 to 10 where each number will be assigned

exclusively to one case and each case will be referred as EIMR

+ the number of encapsulated statement. From these

evaluation cases, we expect invoked method removal to

accurately exclude the content of additional methods found on

plagiarized source code from low level tokens, considering the

fact that these methods have been invoked on the main

method.

The number of removed invoked methods toward our

controlled evaluation cases can be seen on Fig. 7. It is clear

that invoked method removal works as expected since it

accurately removes all additional methods from plagiarized

code. Both actual and expected number of removed method in

all cases are similar. We believe that such high accuracy could

cut up processing time on similarity measurement since not all

method content will be compared through RK-GST algorithm.

Some of them will be excluded prior to comparison due to our

invoked method removal mechanism.

Fig. 7. The Number of Removed Invoked Method Toward Cases Designed
to Evaluate The Advantages of Invoked Method Removal

V. EMPIRICAL EFFECTIVENESS EVALUATION

This section aims to revalidate the advantages of our

proposed approach in an empirical environment. In general,

there are 11 advantages that will be evaluated in this section.

The first eight advantages are adopted from Karnalim’s

approach [11] whereas the others are our new contributions.

Each advantage will be evaluated based on empirical dataset

which plagiarism attack favors such advantage.

The detail of each advantage with its favoring plagiarism

attack and original source code can be seen on Table VI. Each

advantage will be featured with a unique ID that is prefixed

with ADV and its original source code will be taken from

Karnalim’s original source codes [11]. For each advantage, its

original source code will be plagiarized by 11 lecturer

assistants by incorporating its favoring plagiarism attack.

While plagiarizing the code, lecturer assistants should not

change source code semantic. However, they could use other

attacks if needed, as long as such attacks are used to support

predefined favoring plagiarism attack. It is also worth to note

that since the 6th and the 11th advantage refer to exactly-similar

plagiarism attack, both of them will be merged as one

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

TABLE VI
T HE ADVANTAGES OF PROPOSED APPROACH WITH THEIR FAVORING PLAGIARISM ATTACK AND ORIGINAL SOURCE CODE

ID Advantage Plagiarism Attack Original Source
Code

ADV01 Proposed approach is not affected by whitespace modification Modify source code indentation ORIG7

ADV02 Proposed approach is not affected by comment modification Modify source code comments ORIG7

ADV03 Proposed approach is not affected by delimiter modification Modify source code delimiters ORIG7

ADV04 Proposed approach, at some extent, is not affected by identifier
renaming

Modify source code identifier names ORIG7

ADV05 Proposed approach is not affected by semantically-similar
syntactic sugar replacement

Replace syntactic sugar with other
semantically-similar form

ORIG4

ADV06 Proposed approach handles inlining and outlining method Encapsulate source code fragments Original code in
EKAR63

ADV07 Proposed approach ignores dummy methods Add dummy methods Original code in
EKAR73

ADV08 Proposed approach ignores dummy global variables Add dummy global variables ORIG3

ADV09 Proposed approach is sensitive to control flow change Modify instruction scope ORIG7

ADV10 Proposed approach, at some extent, enhances the effectiveness
of method linearization by removing argument-preparation
tokens

Encapsulate instructions as a method
with numerous parameters

Original code in
EARG14

ADV11 Proposed approach enhances the efficiency of similarity
measurement by removing the content of all invoked methods
before comparison

Encapsulate source code fragments Original code in
EKAR63

plagiarism attack, resulting only 10 plagiarism attacks that

will be used by each lecturer assistant.

In total, there are 110 evaluation cases that will be used in

this evaluation. Such cases are classified to 10 plagiarism

attacks wherein each attack is conducted by 11 lecturer

assistants. For easy reference at the rest of this paper, each case

will be assigned with an ID that is formed from the

concatenation of E, advantage ID, and lecturer assistant ID.

For instance, EADV0102 means that such case is generated

for ADV01 advantage by lecturer assistant with 02 as his/her

ID.

Before used as our dataset, plagiarism cases collected from

lecturer assistants are observed manually to ensure whether

such cases follow given instructions or not. As a result, 8 cases

are removed since their main attack is not in-sync with our

request. These cases are EADV0302, EADV0502,

EADV0801, EADV0802, EADV0807, EADV0809,

EADV0811, and EADV0904.

A. Evaluating the 1st and 8th Advantage: Adopted

Advantages from Karnalim’s Approach

In order to evaluate the first eight advantages, which are

adopted from Karnalim’s approach [11], two scenarios are

proposed which are WLL and SLT. WLL refers to our

proposed approach while SLT refers to state-of-the-art

approach that was used in our controlled evaluation to

evaluate the impact of Karnalim’s approach (KAA). For each

advantage, its existence is proved to be prominent iff WLL

generates higher Inverse number of Mismatched Token (IMT)

than SLT. If both approaches generate similar IMT, such

advantage is only considered to be prominent iff WLL has at

least one implicit benefit when compared to SLT.

Evaluation analysis provided in this section will be

presented per advantage where each advantage usually covers

up to 11 plagiarism cases. It will be started from the 1st

advantage, which is about whitespace modification, to the 8th

advantage, which is about dummy global variable. Beside

displaying the result of each advantage toward given cases, we

will also provide a brief description regarding to the

characteristic of implemented attacks and discuss their impact

toward our advantages. Such information is expected to give

a clear view toward how our advantages work to the reader.

From cases about whitespace modification (EADV0101 to

EADV0111), we found that involved plagiarism attacks can

be roughly classified into threefold which are: 1) Stripping all

removable whitespaces; 2) Replacing each whitespace with

multiple whitespaces or vice versa; and 3) Adding or

removing whitespaces unevenly. According to our manual

observation toward given cases, the latter attack is the most

frequent one to occur. We believe that such high occurrence is

natural since such attack is the fastest one to be conducted

when compared to other whitespace-based attacks.

Both WLL and SLT generates zero IMT in all cases about

whitespace modification. Such finding is supported by the fact

that whitespace is automatically excluded by both approaches,

resulting no effect to generated IMT. However, we would

argue that the 1st advantage, which claims that proposed

approach is not affected by whitespace modification, is

prominent despite similar IMT result for both approaches

since WLL’s whitespace removal mechanism is conducted

automatically at compilation phase, resulting no additional

effort for reimplementation.

From cases about comment modification (EADV0201 to

EADV0211), we found that most plagiarism attacks are about

changing natural-language terms used in given comment,

adding new comments, or removing old comments. Only a

few of them are about changing comment format from one-

lined to multiple-lined form or vice versa. We believe that

such finding is natural since changing comment format

requires technical knowledge about how to write source code

comment. It is far more difficult to be conducted when

compared to other comment-based attacks.

Both WLL and SLT still generates zero IMT in all cases

about comment modification since, similar with whitespace,

comment is also excluded automatically before comparison

for both approaches. Nevertheless, despite similar IMT result

for both approaches, we would argue that the 2nd advantage,

which claims that proposed approach is not affected by

comment modification, is prominent since WLL applies such

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

removal mechanism automatically at compilation phase,

resulting no additional effort for reimplementation.

From cases about delimiter modification (EADV0301 to

EADV0311), most plagiarism attacks are focused on inserting

semicolon, bracket, and/or curly bracket in various position.

From our perspective, inserting semicolon is the most obvious

attack since semicolon has no other function except that for

separating statement and putting it not at the end of source

code statement will be seen as an obvious attempt to

plagiarize. It is quite different with inserting bracket or curly

bracket where the plagiarists could argue that such delimiters

are used by them to categorize the statements in clearer

manner.

IMT result for both WLL and SLT toward cases about

delimiter modification can be seen in Fig. 8. WLL is not

affected by such modification since all delimiters will be

excluded at compilation phase. It generates zero IMT in all

cases. SLT, on the contrary, is considerably affected by such

modification since some plagiarized codes split original

tokens into several single tokens by inserting additional

delimiter between them. The split tokens will not be detected

as a match by SLT’s RK-GST algorithm since their respective

length (which is 1) is lower than RK-GST minimum matching

length (which is 2). The most extreme result generated by such

mechanism is found on EADV0305, a case which generates

the lowest IMT. In such case, delimiters are embedded on all

possible positions to split original source code tokens,

resulting 6 single original tokens that are detected as

mismatches by SLT’s RK-GST algorithm. In short, it can be

roughly stated that the 3rd advantage, which claims that

proposed approach is not affected by delimiter modification,

is prominent since WLL generates higher IMT than SLT on

some cases.

Fig. 8. The Inverse Number of Mismatched Token on Evaluation Cases
about Delimiter Modification

From cases about identifier renaming (EADV0401 to

EADV0411), most plagiarism attacks are focused on

renaming method and variable identifier. Some plagiarists

rename it with a slight modification, such as adding a

supplementary prefix character for each identifier, while the

others put a tremendous modification, such as replacing

existing identifier name with an extremely long name.

However, regardless of its form, all identifier renaming will

only affect IMT based on the number of renamed identifier, as

it is known that both approaches do not consider the number

of character-based modification on their comparison metric.

IMT result for both WLL and SLT toward cases about

identifier renaming can be seen in Fig. 9. WLL generates zero

IMT in all cases since it is not affected by identifier renaming

involved on given cases. All renaming mechanism only targets

local variable and method, which are handled quite well by

WLL through Bytecode’s local variable renaming and method

signature similarity. Bytecode’s local variable handles local

variable renaming while method signature similarity handles

method renaming. Both of them work in similar fashion as in

KAA. SLT, on the contrary, generates fluctuated IMT since it

only determines identifier similarity in a naïve manner. Two

identifiers are considered as similar to each other iff both

identifiers share similar mnemonic. Consequently, each

renamed identifier will be considered as different token when

compared to its original token, resulting numerous

mismatched tokens. SLT generates the worst result on

EADV0403, EADV0404, EADV0407, and EADV0409 since,

in these cases, all renamable identifiers are renamed, resulting

-31 IMT when measured using SLT. In short, it can be roughly

stated that the 4th advantage, which claims that proposed

approach, at some extent, is not affected by identifier

renaming, is prominent since WLL generates higher IMT in

these cases.

Fig. 9. The Inverse Number of Mismatched Token on Evaluation Cases
about Identifier Renaming

From cases about syntactic sugar replacement

(EADV0501 to EADV0511), converting a while loop to either

for or do-while loop is occurred on all cases. Such finding is

natural since it is the most obvious replacement that can be

conducted on given code. In some cases, such conversion is

often featured with either changing increment form (e.g. a++;

to a=a+1) or variable renaming to obfuscate plagiarized code

further. It is important to note that, despite the fact that

variable renaming is not a syntactic-sugar-replacement attack,

the plagiarists argue that such attack is needed to smooth up

the relevancy between involved variable name with newly-

introduced loop on their plagiarized code.

IMT result for both WLL and SLT toward cases about

syntactic sugar replacement can be seen in Fig. 10. WLL

generates zero IMT in all cases since it, at some extent,

converts syntactic sugars to their initial form and excludes

some mismatched tokens through minimum matching

similarity. Both mechanism might remove most possible

mismatches from comparison. SLT, on the contrary, generates

fluctuated IMT toward these cases since it cannot handle

syntactic-sugar replacement and variable renaming, as it is

known that SLT compares token only based on its mnemonic

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

without considering other aspects such as token semantic or

variable occurrence order. Among given cases, SLT generates

the worst result on EADV0501 since such case combines loop

conversion, iterator increment change, and variable renaming

at once as its attack. Such combination generates numerous

mismatched tokens, resulting -12 IMT when measured using

SLT. In short, it can be roughly stated that the 5th advantage,

which claims that proposed approach is not affected by

semantically-similar syntactic sugar replacement, is

prominent since WLL generates higher IMT than SLT in some

cases.

Fig. 10. The Inverse Number of Mismatched Token on Evaluation Cases

about Syntactic Sugar Replacement

From cases about encapsulating source code fragments

(EADV0601 to EADV0611), all plagiarism attacks are about

encapsulating statements as methods where the only variation

is about the encapsulation scope. It starts with the largest

scope, the whole main-method statements, to the narrowest

one, a single statement.

IMT result for both WLL and SLT toward cases about

encapsulating source code fragments can be seen in Fig. 11.

WLL generates higher IMT than SLT on half cases thanks to

method linearization and argument removal heuristic. When

combined, both mechanisms, at some extent, could replace

each method invocation with its respective method content

without leaving argument-preparation tokens. As a result, it

could match method invocation with its method content,

resolving issues caused by plagiarism attacks about inlining

and outlining method. Nevertheless, on the other half cases,

WLL generates lower or similar IMT to SLT. When observed

further, such phenomenon is caused by twofold: 1) WLL’s

argument removal heuristic does not always yield accurate

result, especially for handling argument that uses additional

operation. Therefore, it could generate lower IMT for WLL

and, sometimes, such IMT underperforms SLT’s IMT; and 2)

SLT could detect similar pattern from any location of given

source codes since it ignores token context during comparison.

Tokens from main method will be matched with tokens from

encapsulating method even though both of them has no direct

relation. Consequently, it could generate higher IMT for SLT,

and, sometimes, such IMT outperforms WLL’s IMT. In short,

it can be roughly stated that the 6th advantage, which claims

that proposed approach handles inlining and outlining method,

is prominent since WLL generates higher IMT than SLT in

half cases.

From cases about dummy methods (EADV0701 to

EADV0711), we found that dummy methods can be roughly

classified into twofold: relevant and irrelevant dummy

method. Relevant dummy method refers to uninvoked method

that has similar context with main program. For instance,

uninvoked method about power of two that is found on

calculator program. Irrelevant dummy method, on the

contrary, refers to uninvoked method that has different context

with main program. For instance, uninvoked method about

calculating box volume that is found on calculator program.

We would argue that the first category is preferred to be

conducted on real plagiarism task since it will be less obvious

to be accused as a plagiarism case. The plagiarists could argue

that they misread the problem instruction and assumes that

such methods are needed.

Fig. 11. The Inverse Number of Mismatched Token on Evaluation Cases
about Encapsulating Source Code Fragments

IMT result for both WLL and SLT toward cases about

dummy methods can be seen in Fig. 12. WLL generates higher

IMT than SLT in most cases since it ignores dummy methods

from comparison. WLL determines similarity based on

comparing methods with the most similar signature.

Therefore, since dummy methods are only found on

plagiarized code, they will have no pair on original code,

resulting no impact toward WLL’s IMT. SLT, on the contrary,

might be slightly affected by dummy methods even though it

applies RK-GST algorithm which could detect similar sub-

sequence regardless of its position. When observed further,

SLT could generate -1 IMT on these cases since, on

plagiarized code, most dummy methods have the copy of main

method’s statements as their content and main method is not

placed as the first method. Both modification might confuse

RK-GST algorithm when applied together since such

algorithm compares tokens from upper-left to bottom-right

sequentially regardless of their context. Some tokens from

main method in original code might be considered as a match

with tokens from dummy method in plagiarized code,

resulting mismatches for tokens from main method in

plagiarized code. In short, it can be roughly stated that the 7th

advantage, which claims that proposed approach ignores

dummy methods, is prominent since WLL generates higher

IMT than SLT in most cases and WLL is not affected by

method order change.

From cases about dummy global variables (EADV0801 to

EADV0811), we found that dummy global variables can be

roughly classified into twofold: primitive and non-primitive

dummy global variable. Primitive dummy global variable

refers to unused global variable with built-in type (e.g. int and

float) whereas non-primitive global variable refers to unused

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

global variable with reference type (e.g. String and Scanner).

However, regardless of its form, both kinds of variable will

only affect IMT based on the number of incorporated variable,

as it is known that both approaches do not consider variable

type in their comparison metric.

Fig. 12. The Inverse Number of Mismatched Token on Evaluation Cases
about Dummy Methods

Both WLL and SLT still generates zero IMT in all cases

about dummy global variables since they exclude such

variables when determining similarity result. WLL excludes

such variables before comparison since it only compares

method content whereas SLT excludes such variables during

comparison thanks to minimum matching similarity. Despite

similar IMT result for both approaches, we would argue that

the 8th advantage, which claims that proposed approach

ignores dummy global variables, is prominent since WLL

excludes such variables before comparison, resulting fewer

tokens to be compared than SLT.

To sum up, according to our empirical dataset, it can be

stated that the advantages of Karnalim’s approach [11] are

prominent in our approach since WLL outperforms SLT either

explicitly or implicitly on given cases. On the one hand, it

outperforms SLT explicitly by generating higher IMT in five

advantages, which are the 3rd to 7th advantages. On the other

hand, it outperforms SLT implicitly by providing indirect

impact, such as automatic mechanism or fewer compared

tokens, on remaining three advantages, which are the 1st, 2nd,

and 8th advantage.

B. Evaluating the 9 th Advantage: The Sensitiveness of

Control Flow Change

In order to evaluate the 9th advantage, which is about

enhancing the sensitiveness of proposed approach toward

control flow change, two scenarios are proposed which are

WLL and ULL. WLL refers to our proposed approach while

ULL refers to WLL without flow-based token weighting. The

9th advantage is proved to be prominent iff WLL generates

similar IMT with ULL. Such rule is applied based on the fact

that original and plagiarized code for each case share similar

semantic and flow-based token weighting should not be

affected by plagiarism attacks that do not change program

semantic.

From cases about control flow change (EADV0901 to

EADV0911), we found that all instruction-scope-based

attacks are about relocating variable declaration from local

(i.e. method variable) to global scope. According to our

informal survey, the lecturer assistants argue that such

modification is the only instruction-scope-based attack that, at

some extent, does not change program semantic.

IMT result for both WLL and ULL toward cases about

instruction scope modification can be seen in Fig. 13. Both

WLL and ULL generate similar IMT result on all cases. This

finding is natural since incorporated attacks are only about

moving local to global variables and, according to WLL

assumption, such mechanism will not change token weight.

Fig. 13. The Inverse Number of Mismatched Token on Evaluation Cases
about Instruction Scope Modification

It is important to note that both WLL and ULL do not

generate zero IMT on cases about instruction scope

modification since, on these cases, the structure of existing

methods is also modified as a part of plagiarism attack. The

lecturer assistants argue that such modification is necessary to

make the plagiarized code less obvious. They state that global

variables, which are generated as a result of instruction scope

modification, should be accessed by accessing it directly and

such variables should not be passed as method parameter nor

return value.

To sum up, since WLL generates similar IMT with ULL,

it can be roughly stated that the 9th advantage, which claims

that proposed approach is sensitive to control flow change, is

prominent.

C. Evaluating the 10 th Advantage: Enhancing the

Effectiveness of Method Linearization by Removing

Argument-Preparation Tokens

In order to evaluate the 10th advantage, which is about

enhancing the effectiveness of method linearization by

removing argument-preparation tokens, two scenarios are

proposed which are WLL and WLL-ARG. WLL refers to our

proposed approach while WLL-ARG refers to WLL without

argument removal heuristic. The 10th advantage is proved to

be prominent iff total compared tokens on WLL is fewer than

total compared tokens on WLL-ARG. Such rule is applied

with an assumption that the existence of argument removal

heuristic is able to remove argument-preparation tokens,

resulting fewer compared tokens on cases about encapsulating

instructions as a method with numerous parameters.

From cases about encapsulating instructions as a method

with numerous parameters (EADV1001 to EADV1011),

incorporated parameters in given plagiarism attacks can be

roughly classified into twofold: instruction-related and

dummy parameter. On the one hand, instruction-related

parameter refers to a parameter that is used as a part of

operation in encapsulated instructions. Such parameter usually

modifies several instructions so that they can be easily

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

integrated to given parameter. On the other hand, dummy

parameter refers to a parameter that is completely unused in

encapsulated instructions. It is only used to obfuscate given

plagiarism attack and has no effect on program semantic.

However, regardless of its type, both parameter types will be

handled in similar fashion with our argument removal

heuristic. All tokens for preparing arguments resulted from

such parameters will be removed as long as no additional

operation is involved.

The number of compared tokens for both WLL and WLL-

ARG toward cases about encapsulating instructions as a

method with numerous parameters can be seen in Fig. 14. On

all cases, WLL generates fewer compared tokens than WLL-

ARG. Such finding is natural since each case have at least one

argument-preparation token and most of such token will be

removed by argument removal heuristic. As seen in Fig. 14,

delta value of compared tokens between both scenarios varies

per case. It starts with 1 as its lowest delta value to 14 as its

highest delta value. On the one hand, the lowest delta value,

which is 1, is generated from EADV1001, EADV1002,

EADV1005, and EADV1011. Argument removal heuristic

only excludes one token on such cases since these cases only

use either one instruction-related or dummy parameter on its

encapsulating method. On the other, the highest delta value,

which is 14, is generated from EADV1008. Argument

removal heuristic excludes 14 tokens on given case since it

uses 14 instruction-related parameters on its encapsulating

method. Such parameters are used to store the subsequences

of desired output, which will be concatenated on

encapsulating method to generate desired output.

Fig. 14. The Number of Compared Tokens on Cases about Encapsulating
Instructions as a Method with Numerous Parameters

To sum up, according to our result, it can be roughly stated

that the 10th advantage, which claims that proposed approach,

at some extent, enhances the effectiveness of method

linearization by removing argument-preparation tokens, is

prominent since the number of compared tokens on WLL is

fewer than the number of compared tokens on WLL-ARG in

all cases.

D. Evaluating the 11 th Advantage: Enhancing the Efficiency

of Similarity Measurement by Removing the Content of

All Invoked Methods Before Comparison

In order to evaluate the 11th advantage, which is about

enhancing the efficiency of similarity measurement by

removing the content of all invoked methods before

comparison, two scenarios are proposed which are WLL and

WLL-IMR. WLL refers to our proposed approach while

WLL-IMR refers to WLL without invoked method removal.

The 11th advantage is proved to be prominent iff total

compared methods on WLL is fewer than total invoked

methods on WLL-IMR. Such rule is applied with an

assumption that the existence of invoked method removal is

able to remove invoked methods form comparison, resulting

fewer compared methods on cases about encapsulating source

code fragments.

From cases about encapsulating source code fragments

(EADV0601 to EADV0611), the number of invoked methods

varies per case. It is ranged from 2 to 8 methods with 4.454

methods per case in average. Our invoked method removal is

expected to effectively remove all invoked methods listed on

both original and plagiarized source code regardless of its

number.

The number of compared methods for both WLL and

WLL-IMR toward cases about encapsulating source code

fragments can be seen in Fig. 15. WLL involves four

compared methods per case regardless of its number of initial

methods while WLL-IMR involves numerous compared

methods regarding to its number of initial methods. On the one

hand, WLL involves only four compared methods regardless

of its number of initial methods since, on these cases, most

methods have been invoked on main method, resulting only

four non-invoked methods for comparison. These methods are

originated from both original and plagiarized source code

where each code contributes two method: main method and

implicit constructor. It is important to note that the latter

method is automatically generated by Java compiler. Thus, it

will always be found on each similarity measurement.

However, since its length is considerably short, we would

argue that the existence of such method is not significant and

we could ignore it for our current work. On the other hand,

WLL-IMR involves numerous compared methods regarding

to its number of initial methods since it considers all initial

methods when determining similarity degree, resulting more

processes to be conducted.

Fig. 15. The Number of Compared Methods on Cases about Encapsulating
Source Code Fragments

To sum up, according to our result, it can be roughly stated

that the 11th advantage, which claims that proposed approach

enhances the efficiency of similarity measurement by

removing the content of all invoked methods before

comparison, is prominent since the number of compared

methods on WLL is fewer than the number of compared

methods on WLL-IMR in all cases.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

VI. TIME EFFICIENCY EVALUATION

This section aims to measure time efficiency of our

proposed approach (WLL) when compared to Karnalim’s

approach (KAA) and state-of-the-art approach (SLT). Such

efficiency will be measured by comparing processing time

between involved approaches toward raw dataset that has been

used by Karnalim [11] to enlist popular plagiarism attacks on

Introductory Programming. It consists of 378 plagiarism pairs

which were collected from 9 lecturer assistants and mapped to

6 categories based on Faidhi & Robinson’s plagiarism levels

[18]. However, since processing source codes on such dataset

is considerably fast due to their short number of token; and

empirical processing time is inaccurate to capture short

execution time, we use Approximate Estimated Time (AET),

which is inspired from Rabbani & Karnalim’s work [4], as our

time efficiency metric. Such metric determines time efficiency

based on the number of involved processes instead of

empirical processing time, resulting accurate result even for

capturing short execution time.

AET for WLL, KAA, and SLT can be seen on (4), (5), and

(6) respectively. Firstly, AET for WLL is defined as the total

AET for three phases: compilation, extraction, and

comparison phase. First, compilation phase takes N0+M0

processes where N0 and M0 represent the number of source

code tokens from compiled source codes. Second, extraction

phase takes (N2 + 9N) + (M2 + 9M) where N and M represent

the number of low-level tokens from extracted executable

files. Each executable file takes (T2 + 9T) for each T tokens

where its details can be seen in Table VII. Each phase is

featured with its respective assumption which indirectly

determines its generated AET based on the worst case. Last,

comparison phase, which relies on RK-GST, takes max(N,M)3

processes. Such AET is generated based on RK-GST worst

case time complexity. Secondly, AET for KAA is defined in

similar manner as in WLL except that it excludes flow-based

token weighting, argument removal heuristic, and invoked

method removal from extraction phase. Finally, AET for SLT

is defined in similar manner as in WLL except that it excludes

all low-level extraction processes and replaces N & M with N0

& M0 at comparison phase. Such modifications are applied

based on the fact that SLT detects similarity based on source

code tokens instead of the low-level ones.

AETW LL(M,N) =(max(N,M))3+N2+M2+9N+9M+N0+M0 (4)

AETULL(M,N) =(max(N,M))3+N2+M2+4N+4M+N0+M0 (5)

AETSST(M,N) =(max(N0,M0))3+N0+M0 (6)

Averaged AET result toward plagiarism-level-focused

evaluation dataset can be seen in Fig. 16. Vertical axis

represents averaged AET value for each approach per

plagiarism level whereas horizontal axis represents Faidhi &

Robinson’s plagiarism levels [18]. In general, it can be stated

that WLL is moderately efficient in terms of its processing

time since it generates extremely fewer processes than SLT

and slightly more processes than KAA for each plagiarism

level. On the one hand, it generates extremely fewer processes

than SLT since low-level tokens are far more concise than

source code tokens. For most program statements, the number

of low-level tokens required to represent such statement is

usually fewer than the number of source code tokens required

to represent similar statement. Such phenomenon reduces the

number of compared tokens on WLL, resulting fewer number

of processes when compared to SLT, even though AET for

WLL is more complex than AET for SLT in terms of time

complexity. On the other hand, it generates slightly more

processes than KAA since both approaches accept similar

number of tokens per case and AET for WLL is slightly more

complex than AET for KAA in terms of time complexity. It

takes 5N + 5M processes more where N and M are the length

of compared token sequences.

Fig. 16. Averaged Approximate Estimated T ime per Plagiarism Level

To sum up, there are two findings that can be deducted

which are: 1) Our approach is extremely more efficient than

state-of-the-art approach due to the compactness of token

representation in low-level form; and 2) Our approach is

slightly less efficient than Karnalim’s approach due to the

existence of flow-based token weighting, argument

TABLE VII

AET FOR EACH EXTRACTION PHASE IN WLL

Extraction Phase AET Assumption

Method Content Extraction T -

Flow-based Token Weighting 3T 2T processes for detecting loops using Tarjan’s algorithm by assuming each graph has T nodes and T edges.
T processes for assigning flow-based token weight.

Recursive-Method Invocation
Elimination

3T 2T processes for detecting recursive methods using Tarjan’s algorithm by assuming each graph has T nodes
and T edges.
T processes for eliminating recursive methods by assuming the worst case: each method contains one token
and all of them are recursive methods.

Method Linearization T
2
 + T T

2
 processes for linearizing methods by assuming the worst case: each method consists of one token and all

of them are required to be linearized.
T processes for argument removal heuristic by assuming the worst case: each existing token on method body
should be removed.

Invoked Method Removal T Assuming the worst case of invoked method removal: all methods are invoked where each method consists
of one token.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

removal heuristic, and invoked method removal.

VII. QUALITATIVE EVALUATION

This evaluation aims to qualitatively measure the

effectiveness of our advantages in practice. We want to

revalidate whether our advantages are useful in practical

environment or not. In order to do that, we conduct a survey

toward 11 lecturer assistants from Programming courses about

our advantages. We assume that the feedbacks of these

assistants could represent plagiarism phenomena in practical

environment since they should have had numerous experience

in terms of detecting source code plagiarism.

A. Survey Questions

Since we assume that each respondent is accustomed to

detect plagiarism attack due to their experience, we do not ask

directly whether the advantages of our approach are effective

or not. Instead, we convert each advantage to a plagiarism

attack that favors given advantage and ask them the

characteristics of that attack in practical environment. We

believe that such conversion could provide more objective

result since the respondents could understand the impact of

such advantages based on example. Plagiarism attack that will

be used to represent each advantage is taken from attack

mapping that has been used to generate advantage-focused

empirical evaluation dataset. It can be seen on Table VI. In

addition to providing plagiarism attacks that favor given

advantages, we also provide sample cases which show the

impact of given attacks. The sample case for each attack per

advantage can be seen on Table VIII. Advantage ID is

referenced based on ID convention generated on Table VI

whereas each sample case is referenced from advantage-

focused controlled evaluation dataset. Since ADV6 and

ADV11 share similar attack, both advantages will be

represented as one plagiarism attack at once, resulting only 10

plagiarism attacks displayed to the respondents.

TABLE VIII

T HE ADVANTAGES OF PROPOSED APPROACH WITH THEIR PLAGIARISM

ATTACK AND SAMPLE CASE

Advantage

ID

Plagiarism Attack Sample

Case
ADV1 Modify source code indentation EKAR11

ADV2 Modify source code comments EKAR24

ADV3 Modify source code delimiters EKAR34

ADV4 Modify source code identifier names EKAR46

ADV5 Replace syntactic sugar with other

semantically-similar form

EKAR52

ADV6 Encapsulate source code fragments EKAR63

ADV7 Add dummy methods EKAR73

ADV8 Add dummy global variables EKAR83

ADV9 Modify instruction scope EFLA76

ADV10 Encapsulate instructions as a method
with numerous parameters

EARG14

ADV11 Encapsulate source code fragments EKAR63

For each attack, the respondents are required to measure

its semantic similarity, obfuscation, and occurrence degree

according to their experience as programming assistants. For

clarity, these degrees will be converted to three research

questions which are:

a) R1: How similar the semantics between original and

plagiarized code if such attack is performed?

b) R2: How obfuscated the plagiarized code if such

attack is performed?

c) R3: How frequent is the occurrence of such attack

among student’s works?

First of all, R1 aims to collect assistant’s perspective

toward semantic similarity. It aims to check whether similarity

in our approach matches human-defined semantic similarity

or not. Secondly, R2 aims to measure the impact of plagiaris m

attacks toward human evaluators. It aims to evaluate whether

such attacks could be easily recognized by humans or not.

Finally, R3 aims to approximately measure the occurrence of

given plagiarism attacks. It aims to check how frequent the

given attacks are occurred in student’s works. These three

research questions will be answered in 5-points scale where

each point represents an approximate proportion. 1 refers to

less than 20%; 2 refers to greater than 20% and less or equal

to 40%; 3 refers to greater than 40% and less or equal to 60%;

4 refers to greater than 60% and less or equal to 80%; and 5

refers to greater than 80% and less or equal to 100%. For each

given answer, the respondents are required to provide their

own rationale, which will be used for our further analysis.

Each advantage will be considered as a prominent

advantage in practical environment if its generated attack gets

maximum score on all research questions by all respondents.

High score on those aspects means that such attack does not

change program semantic, generates perfect obfuscation for

human evaluator, and occurs frequently on student’s work. In

short, such attack is required to be detected by a plagiarism

detection system. Therefore, since such attack favors our

advantage, it can be stated that our advantage is prominent on

practical environment.

B. Respondents

Our respondents consist of 11 undergraduate students who

were assigned as lecturer assistants in Programming courses.

The statistics of such respondents can be seen in Table IX.

There are two findings which can be deducted from given

statistic. On the one hand, among these respondents, there are

two well-experienced assistants who have assisted numerous

Programming courses. Consequently, standard deviation in

the first two rows on given table are considerably high. On the

other hand, in terms of Grade Average Point (GPA), all

respondents have GPA higher than 3.5. Each of them is

considered either as a first-class or second-class honored

student. Thus, it can be stated that only smart lecturer

assistants with high academic merit are selected for this

evaluation. We expect such selection could provide more

objective result since they could perform in-depth analysis

while answering the questionnaire.

C. Responses for R1: How similar the semantics between

original and plagiarized code if such attack is performed?

The average semantic similarity degree for each attack per

advantage can be seen on Fig. 17. Vertical axis represents

average degree for each attack whereas horizontal axis

represents plagiarism attacks that are represented with its

respective advantage. It is interesting to see that none of the

cases yield average value higher or equal to 3. In other words,

all cases are roughly considered to have semantic similarity

lower than 40%. When observed further, most respondents

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

were confused with the differences between syntactic and

semantic similarity. They tended to consider every

modification as a semantic modification. Thus, they provided

low score for all cases. We would argue that such finding is

natural for our respondents since they had no experience in

compiler techniques. Among these respondents, only two of

them have some experiences on compiler techniques. They

provided high score in most cases. However, the impact of

such scores is insignificant when compared to majority scores

since each case still yields low average score.

TABLE IX

RESPONDENT STATISTICS

Variable Min Max Average Standard
Deviation

The number of course session
which has been assisted

1 30 6.818 8.155

The distinct number of
Programming course session
which has been assisted

1 5 2.909 1.239

Grade Point Average (GPA) 3.6 3.96 3.826 0.131

Fig. 17. Average Semantic Similarity Degree

One of the extreme examples regarding to respondent

confusion about syntactic and semantic similarity is ADV1

case. It yields the lowest score when compared to other cases

even though it involves no semantic modification. It only

changes source code indentation which will be discarded at

compilation phase. According to the respondent’s rationales,

they admitted that they had considered such modification as a

semantic change. ADV9 case, which gains the highest score,

is also affected by such confusion. It gets considerably high

score since its modification is insignificant on syntactic level.

In order to get accurate perspectives about semantic

similarity of given attacks, we reconduct such survey on

similar respondents. The procedure of such survey is quite

similar with our initial survey except that the definition of

semantic similarity is given comprehensively to respondents

before they fill up the survey. The average semantic similarity

degree for each attack per advantage can be seen on Fig. 18.

Vertical axis represents average degree for each attack

whereas horizontal axis represents plagiarism attacks that are

represented with its respective advantage. According to given

results, ADV1, which was scored with the lowest similarity

value on the initial survey, is scored with the highest similarity

value (4.09 of 5) on our second survey. Such significant

change is natural since, in post-survey, the respondents have

understood the definition of semantic similarity. They will

only provide low similarity score on source code pairs which

modification affects the program flow, such as ADV10.

ADV10 gains the lowest score in post-survey since the

respondents argued that additional parameters resulted from

given case affect the program flow quite significantly when

compared to other cases.

Fig. 18. Average Semantic Similarity Degree Resulted from The Second
Survey

D. Responses for R2: How obfuscated the plagiarized code

if such attack is performed?

The average obfuscation degree for each attack per

advantage can be seen on Fig. 19. Vertical axis represents

average degree for each attack whereas horizontal axis

represents plagiarism attacks that are represented with its

respective advantage. None of involved cases yield average

result higher or equal to 3. In other words, all cases have

obfuscation degree lower than 40%. Therefore, it can be stated

that, according to our respondents, plagiarism attacks involved

in these cases are not obfuscated enough. They could still be

detected through manual observation by the respondents.

However, it is important to note that such result is generated

based on our respondents who are limited to students with high

academic merit. We would argue that resulted obfuscation

degrees might be higher if ordinary lecturer assistants were

involved.

Fig. 19. Average Obfuscation Degree

Among these cases, ADV3 case yields the lowest score,

which is 1, since all respondents think that modifying

delimiter is an obvious attack. It only slightly intensifies the

obfuscation degree while its existence could make the human

examiner becomes more suspicious about given code. No

programmers intentionally put extra delimiters while solving

the problem. Normally, they will focus on source code

semantic instead. ADV6 & ADV11 case, on the contrary,

yields the highest score since, according to our respondents,

encapsulating source code fragments is the most advanced

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

attack in our evaluated cases. It, at some extent, could change

source code layout significantly and can only be done by smart

students due to its complexity.

E. Responses for R3: How frequent is the occurrence of such

attack among student’s works?

In fact, this evaluation would become more

comprehensive if its findings were deducted empirically from

student’s programming works, that could be extracted from

various programming classes in previous semesters. However,

since we do not record such data in our university, we alter our

evaluation mechanism to approximately measure it through

lecturer assistant’s memory and experience about such

occurrences.

The average occurrence degree for each attack per

advantage can be seen on Fig. 20. Vertical axis represents

average degree for each attack whereas horizontal axis

represents plagiarism attacks that are represented with its

respective advantage. In general, most cases are quite seldom

occurred since their score is lower than 3, which means that

their occurrences are less than 40%. Among these cases,

ADV4 case is the only case which does not follow such trend.

It generates 4.091 average score, which means that its

occurrence is higher than 80%. According to respondent’s

rationales, they stated that identifier renaming, which is found

on ADV4 case, is popular among students since it is easy to

be conducted and less obvious to be suspected as a plagiarism

act. As we know, identifier names are purely determined based

on human natural language knowledge. Thus, it is harder to

claim such modification as a plagiarism attack. The students

could easily avoid the accusation by claiming that they

thought these names by themselves while creating the code.

Even though ADV1, ADV2, and ADV3 case are easier to be

conducted, these cases still generate lower obfuscation degree

than ADV4 since they are too obvious. They could make the

human examiner becomes more suspicious about given code.

Fig. 20. Average Occurrence Degree

F. Generalized Result

According to respondent’s feedbacks, several findings can

be deducted which are:

a) Plagiarism attacks regarding to our advantages

generate low similarity degree when the respondents

consider both syntactic and semantic aspect. They

will assume every source code modification as a

differentiating factor. Such finding is deducted from

initial survey result about R1 where all cases are

scored lower than 3 in our scale.

b) Plagiarism attacks regarding to our advantages

generate high semantic similarity degree since,

according to our respondents, these attacks do not

significantly change program behavior. Such finding

is deducted from second-survey result about R1

where all cases are scored higher than 3 in our scale.

c) Plagiarism attacks regarding to our advantages can

be detected by our respondents easily since,

according to our respondents, such attacks have low

obfuscation degree. Such finding is deducted from

the survey result about R2 where all cases are scored

lower than 3 in our scale. We would argue that such

low results are supported by the fact that our

respondents are smart students who have high

academic merit. The resulted obfuscation degrees

might be higher if ordinary lecturer assistants were

involved.

d) Most plagiarism attacks regarding to our advantages

are seldom occurred since they are either too

complex to be conducted or too obvious to be

suspected as a plagiarism attack. Identifier renaming,

which is handled by our fourth advantage (ADV4),

is the only case which does not follow such trend.

According to our respondent’s experience, more than

80% plagiarized code pairs contain such attack.

These findings are deducted from the survey result

about R3 where most cases are scored lower than 3

and only ADV4 case is scored higher than 3.

When perceived based on our approach’s advantages, it

can be stated that the advantages of our approach target

plagiarism attacks that do not significantly change program

semantic, generate moderate obfuscation, and generate

moderate occurrences on student’s works. Thus, we would

argue that our approach is moderately effective to handle

plagiarism attacks in practical environment.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a low-level structure-based approach for

detecting source code plagiarism is proposed. It is extended

from Karnalim’s work [11] by incorporating flow-based token

weighting, argument removal heuristic, and invoked method

removal. Flow-based token weighting is intended to reduce

the number of false-positive results; argument removal

heuristic is intended to generate more-accurate linearized

method content; and invoked method removal is intended to

fasten processing time. According to our evaluation schemes,

three findings can be deducted regarding to our proposed

approach. Firstly, the advantages provided by our proposed

approach are prominent in both controlled and empirical

environment. Secondly, in general, our proposed approach

outperforms Karnalim’s and state-of-the-art approach in terms

of time efficiency. Finally, our approach is moderately

effective to handle plagiarism attacks in practical

environment.

For further research, our work will be expanded to handle

source code plagiarism in object-oriented environment. As we

know, most programming tasks nowadays are written in

object-oriented fashion and handling object-oriented code is

an inevitable task. One of such expansion has been published

on [53]. It proposes a naïve approach to linearize abstract

method. In addition of such future work, we also intend to

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

combine attribute-based approach with our approach. Such

combination is expected to generate more-accurate plagiarism

detection.

REFERENCES

[1] C. Kustanto and I. Liem, "Automatic Source Code Plagiarism
Detection," in The 10th ACIS International Conference on Software

Engineering, Artificial Intelligences, Networking and
Parallel/Distributed Computing, Daegu, 2009.

[2] S. Hannabuss, "Contested texts: issues of plagiarism," Library
Management, vol. 22, no. 6, pp. 311-318, 2001.

[3] H. Maurer, F. Kappe and B. Zaka, "Plagiarism - A Survey," Journal
of Universal Computer Sciences, vol. 12, no. 8, pp. 1050-1084, 2006.

[4] F. S. Rabbani and O. Karnalim, "Detecting Source Code Plagiarism

on .NET Programming Languages using Low-level Representation
and Adaptive Local Alignment," Journal of Information and
Organizational Sciences, vol. 41, no. 1, pp. 105-123, 2017.

[5] G. Cosma and M. Joy, "Towards a Definition of Source-Code

Plagiarism," IEEE Transactions on Education, vol. 51, no. 2, pp. 195
- 200, 2008.

[6] K. Danutama and I. Liem, "Scalable Autograder and LMS
Integration," Procedia Technology, vol. 11, pp. 388-395, 2013.

[7] J. Hamilton and S. Danicic, "An Evaluation of The Resilience of Static
Java Bytecode Watermarks Against Distortive Attacks," IAENG
International Journal of Computer Science, vol. 38, no. 1, pp. 1-15,
2011.

[8] O. Karnalim and R. Mandala, "Java Archives Search Engine Using
Byte Code as Information Source," in International Conference on
Data and Software Engineering (ICODSE), Bandung, 2014.

[9] O. Karnalim, "Software Keyphrase Extraction with Domain-Specific
Features," in The 10th International Conference on Advanced
Computing and Applications (ACOMP), Can Tho, 2016.

[10] S. Alekseev, A. Karoly, D. T . Nguyen and S. Reschke, "St atic and

Dynamic JVM Operand Stack Visualization And Verification,"
IAENG International Journal of Computer Science, vol. 41, no. 1, pp.
62-71, 2014.

[11] O. Karnalim, "Detecting Source Code Plagiarism on Introductory

Programming Course Assignments Using a Bytecode Approach," in
The 10th International Conference on Information & Communication
Technology and Systems (ICTS), Surabaya, 2016.

[12] Z. A. Al-Khanjari, J. A. Fiadhi, R. A. Al-Hinai and N. S. Kutti,

"PlagDetect: a Java programming plagiarism detection tool," in ACM
Inroads, New York, ACM, 2010, pp. 66-71.

[13] C. K. Roy and J. R. Cordy, "A Survey on Software Clone Detection

Research," School of Computing, Queen's University, Canada, 2007.

[14] S. Burrows, S. M. M. Tahaghoghi and J. Zobel, "Efficient and
effective plagiarism detection for large code repositories," Software-
Practice & Experience, vol. 37, no. 2, pp. 8-15, 2007.

[15] K. Ottenstein, "An Algorithmic Approach to the Detection and
Prevention of Plagiarism," in SIGCSE Bulletin, New York, ACM,
1977, pp. 30-41.

[16] Z. Djuric and D. Gasevic, "A Source Code Similarity System for

Plagiarism Detection," The Computer Journal, vol. 56, no. 1, pp. 70-
86, 2012.

[17] S. Grier, "A Tool that Detects Plagiarism in Pascal Programs," in The
12th ACM SIGCSE Technical Symposium, New York, 1981.

[18] J. A. W. Faidhi and S. K. Robinson, "An Empirical approach for
detecting program similarity and plagiarism within a university
programming environment," Computer & Education, vol. 11, no. 1,

pp. 11-19, 1987.

[19] U. Bandara and G. Wijayarathna, "A machine learning based tool for
source code plagiarism detection," International Journal of Machine
Learning and Computing, vol. 1, no. 4, pp. 337-343, 2011.

[20] R. C. Lange and S. Mancoridis, "Using code metric histograms and
genetic algorithms to perform author identification for software
forensics," in The 9th annual conference on Genetic and evolutionary
computation, New York, 2007.

[21] A. Ramirez-de-la-Cruz, G. Ramirez-de-la-Rosa, C. Sanchez-Sanchez,
H. Jimenez-Salazar, C. Rodriguez-Lucatero and W. A. Luna-Ramirez,
"High level features for detecting source code plagiarism across

programming languages," in Cross-Language Detection of SOurce
COde Re-use Conference, 2015.

[22] G. Cosma and M. Joy, "Evaluating the performance of LSA for
source-code plagiarism detection," Informatica, vol. 36, no. 4, pp.
409-424, 2012.

[23] A. Jadalla and A. Elnagar, "PDE4Java: Plagiarism Detection Engine
for Java source code: a clustering approach," International Journal of
Business Intelligence and Data Mining, vol. 3, no. 2, pp. 121-135,
2008.

[24] E. Merlo, "Detection of Plagiarism in University Projects Using
Metrics-based Spectral Similarity," in Dagstuhl Seminar 06301 -
Duplication, Redundancy, and Similarity in Software, 2007.

[25] I. Smeureanu and B. Iancu, "Source Code Plagiarism Detection

Method Using Protege Built Ontologies," Informatica Economica,
vol. 17, no. 3, pp. 75-86, 2013.

[26] R. Brixtel, M. Fontaine, B. Lesner and C. Bazin, "Language-
independent clone detection applied to plagiarism detection," in 10th

IEEE Working Conference on Source Code Analysis and
Manipulation, Timisoara, 2010.

[27] L. Prechelt, G. Malpohl and M. Philippsen, "Finding plagiarisms

among a set of programs with JPlag," Journal of Universal Computer
Science, vol. 8, no. 11, pp. 1016-1038, 2002.

[28] J.-S. Lim, J.-H. Ji, H.-G. Cho and G. Woo, "Plagiarism detection
among source codes using adaptive local alignment of keywords," in

The 5th International Conference on Ubiquitous Information
Management and Communication, Seoul, 2011.

[29] N. Upreti and R. Kumar, "'CodeAliker' - Plagiarism Detection on the
Cloud," Advanced Computing: An International Journal, vol. 3, no. 4,

pp. 21-26, 2012.

[30] M. Chilowicz, É. Duris and G. Roussel, "Finding Similarities in
Source Code Through Factorization," Electronic Notes in Theoretical
Computer Science, vol. 238, no. 5, pp. 47-62, 2008.

[31] M. Chilowicz, E. Duris and G. Roussel, "Syntax tree fingerprinting for
source code similarity detection," in IEEE 17th International
Conference on Program Comprehension, Vancouver, 2009.

[32] M. G. Ellis and C. W. Anderson, "Plagiarism Detection in Computer

Code," 2005.

[33] V. Juričić, "Detecting source code similarity using low-level
languages," in 33rd International Conference on Information

Technology Interfaces, Dubrovnik, 2011.

[34] V. Juricic, T . Juric and M. Tkalec, "Performance evaluation of
plagiarism detection method based on the intermediate language," in
INFuture2011: "Information Sciences and e-Society", 2011.

[35] J.-H. Ji, G. Woo and H.-G. Cho, "A Plagiarism Detection Technique
for Java Program Using Bytecode Analysis," in ICCIT '08. Third
International Conference on Convergence and Hybrid Information
Technology, Busan, 2008.

[36] M. J. Wise, "YAP3: Improved detection of similarities in computer
programs and other texts," ACM SIGCSE Bulletin, vol. 28, no. 1, pp.
130-134, 1996.

[37] S. Schleimer, D. S. Wilkerson and A. Aiken, "Winnowing: Local

Algorithms for Document Fingerprinting," in The ACM SIGMOD
International Conference on Management of Data, San Diego, 2003.

[38] T . F. Smith and M. S. Waterman, "Identification of common

molecular subsequences," Journal of Molecular Biology, vol. 147, no.
1, pp. 195-197, 1981.

[39] M. E. B. Menai and N. S. Al-Hassoun, "Similarity Detection in Java
Programming Assignments," in The 5th International Conference on

Computer Science & Education, Hefei, 2010.

[40] S. Engels, V. Lakshmanan and M. Craig, "Plagiarism detection using
feature-based neural networks," in The 38th SIGCSE technical
symposium on Computer science education, New York, 2007.

[41] A. Ohno and H. Murao, "A two-step in-class source code plagiarism
detection method utilizing improved CM algorithm and SIM,"
International Journal of Innovative Computing, Information, and
Control, vol. 7, no. 8, pp. 4729-4739, 2011.

[42] M. Mozgovoy, S. Karakovskiy and V. Klyuev, "Fast and Reliable
Plagiarism Detection System," in The 37th ASEE/IEEE Frontiers in
Education Conference, Milwaukee, 2007.

[43] "Welcome to Netbeans," Oracle, [Online]. Available:
https://netbeans.org/. [Accessed 23 2 2017].

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

[44] "Visual Studio | Developer Tools and Services | Microsoft IDE,"
Microsoft, [Online]. Available: https://www.visualstudio.com/.

[Accessed 23 2 2017].

[45] M. J. Wise, "Detection of similarities in student programs: YAP'ing
may be preferable to plague'ing," in Proceedings of the twenty-third

SIGCSE technical symposium on Computer science education , New
York, 1992.

[46] T . Parr, "ANTLR," 2014. [Online]. Available: http://www.antlr.org/.
[Accessed 07 12 2015].

[47] "GitHub - antlr/grammars-v4: Grammars written for ANTLR v4;
expectation that the grammars are free of actions.," [Online].
Available: https://github.com/antlr/grammars-v4. [Accessed 8 12
2016].

[48] "Javassist by jboss-javassist," jboss-javassist, 1999. [Online].
Available: http://jboss-javassist.github.io/javassist/. [Accessed 23 2
2017].

[49] S. Chiba, "Load-time Structural Reflection in Java," in ECOOP 2000
- Object-Oriented Programming, Berlin, 2000.

[50] S. Chiba and M. Nishizawa, "An Easy-to-Use Toolkit for Efficient
Java Bytecode Translators," in The 2nd International Conference on
Generative Programming and Component Engineering (GPCE '03),

Berlin, 2003.

[51] R. Tarjan, "Depth-first Search and Linear Graph Algorithm," SIAM
Journal of Computing, vol. 1, no. 2, pp. 146-160, 1972.

[52] Y. D. Liang, Introduction to Java Programming Comprehensive

Version Ninth Edition, Prentice Hall, 2013.

[53] O. Karnalim, "An Abstract Method Linearization for Detecting Source
Code Plagiarism in Object -Oriented Environment," in The 8th
International Conference on Software Engineering and Service

Science (ICSESS), Beijing, 2017.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_11

(Advance online publication: 20 November 2017)

__

