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Abstract—According to the fact that source code plagiarism 

is an emerging issue in Computer Science programming courses, 

several source code plagiarism detection approaches are 

developed. One of them is Karnalim’s approach, an approach 

which detects plagiarism based on low-level tokens. This paper 

proposes an expansion of such approach by incorporating three 
contributions which are: flow-based token weighting; argument 

removal heuristic; and invoked method removal. Flow-based 

token weighting aims to reduce the number of false-positive 

results; argument removal heuristic aims to generate more-

accurate linearized method content; and invoked method 
removal aims to fasten processing time. According to our 

evaluation, three findings can be deducted about proposed 

approach. Firstly, advantages provided by our proposed 

approach are prominent in both controlled and empirical 

environment. Secondly, our proposed approach outperforms 
Karnalim’s and state-of-the-art approach in terms of time 

efficiency. Finally, our approach is moderately effective to 

handle plagiarism attacks in practical environment. 

 

Index Terms—plagiarism detection, source code, low-level 

language, java, bytecode 
 

I. INTRODUCTION 

LAGIARISM is an act for reusing other people’s work 

without acknowledging them as its original author(s) 

beforehand [1, 2, 3]. In undergraduate Computer Science (CS) 

major, it emerges as a serious issue since most assignments are 

conducted electronically. A student coursework can be easily 

copied and pasted as a new one in a no time. Moreover, since 

plagiarists are not only limited into weak students [4], 

detecting this illegal behavior will require a lot of effort. 

Plagiarized source code might contain complex plagiaris m 

attacks and deciding its originality usually takes a 

considerable amount of time. Regarding to these issues , an 

automatic plagiarism detection approach is highly desirable to 

extenuate lecturer effort for detecting such plagiaris m 

manually. 

Source code plagiarism is a specific plagiarism issue 

which comes into source code domain. When compared to 

plagiarism on other domains, we would argue that this issue is 

the most prominent one on CS majors based on twofold. On 

the one hand, source code is the most frequent representation 

that is used to complete CS assignments [5]. Such finding is  

natural since programming is one of the core topic in CS and 
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most programming courses usually ask student to submit 

source codes to complete weekly assignment. On the other 

hand, source code is a potential to-be-plagiarized 

representation. Such finding is deducted from the fact that 

most source code assignments are graded using an auto-grader 

[6] instead of human evaluator and tricking such system is 

easy as long as the students know how it works.  

To handle such prominent issue, this paper proposes a 

source code plagiarism detection approach that relies on low-

level representation, which is Bytecode, an executable code 

for Java programming language. In fact, such form has been 

frequently used in various research tasks such as software 

watermarking [7], software retrieval system [8], software 

keyphrase extraction [9], and virtual machine optimization  

[10]. Our approach is extended from Karnalim’s approach  

[11] by incorporating threefold: flow-based token weighting, 

argument removal heuristic, and invoked methods removal. 

These additional features are expected to generate higher 

effectiveness and efficiency for low-level approach.  

II. RELATED WORKS 

When detecting source code plagiarism, most approaches 

are classified into two categories which are attribute-based and 

structure-based approach [12]. Attribute-based approach 

detects plagiarism by comparing key properties from given 

source codes whereas structure-based approach detects 

plagiarism by comparing source code ordinal structure. It is 

important to note that such classification is not agreed by all 

researchers. Some of them claim that text-based approach 

should be added beside both approaches [13, 14, 4]. According 

to their perspective, such approach should be explicitly  

defined since it does not take source code features into 

consideration. It only treats source code as a raw text during 

its process. Yet, we would argue that, in terms of 

methodology, such approach can still be considered as either 

attribute-based or structure-based approach. Therefore, in this 

section, all implementations of text-based approach will be 

mapped to the first two approaches: attribute-based and 

structure-based approach.  

Attribute-based approach (ABA) extracts key properties 

from source codes and compares  them to each other for 

detecting plagiarism. Two or more source codes are 

considered as plagiarized to each other iff these source codes 

yield similar key properties . Earlier work of this approach is 

conducted by Ottenstein using software science metrics [15]. 

However, since key properties in his work are not sufficient to 

represent source code characteristics , additional properties, 

such as the number of variables, methods, loops, conditional 

statements, method invocations, and programmer style 
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behavior, are introduced on further works about ABA [16, 17, 

12, 18, 19, 20].  

According to the fact that most plagiarized codes do not 

share exactly-similar characteristics toward their original 

code, several ABAs incorporate approximate characteristic-

matching instead of the exact one. In such manner, detected 

plagiarism is not only limited to verbatim copy but also 

partially-similar copy. Generally speaking, such approximate 

matching is adapted from threefold: Information-Retrieval 

(IR), Machine Learning (ML), and domain-specific 

measurement. Firstly, IR-based matching defines similarity  

based on standard IR similarity algorithms. Two works which 

utilize such matching are Ramirez-de-la-Cruz et al’s work 

[21], which incorporates Cosine Similarity, and Cosma & 

Joy’s work [22], which incorporates Latent Semantic 

Analysis. Secondly, ML-based matching defines similarity  

based on classification and clustering algorithm. Two works 

which utilize such matching are Bandara & Wijayarathna’s 

work [19], which combines three classification algorithms for 

deducting similarity, and Jadalla & Elnagar’s work [23], 

which defines similarity based on similar cluster. Finally , 

domain-specific matching defines similarity based on domain-

specific similarity measurement. Two works which utilize 

such matching mechanism are Merlo’s work [24], which 

incorporates spectral similarity, and Smeureanu & Iancu’s 

work [25], which incorporates graph similarity. 

Structure-based approach (SBA) detects plagiarism based 

on ordinal structure similarity. Two or more source codes are 

considered as plagiarized to each other iff these source codes 

share similar structure. Typically, this approach is more 

accurate than ABA even though it takes longer processing 

time. In general, structure similarity in such approach is 

determined based on two phases. First of all, source codes are 

converted into intermediate representation such as source code 

token [26, 1, 27, 16, 28, 29], compiler-based representation 

[30, 31, 32], or low-level token [33, 34, 35, 11, 4]. Afterwards, 

tokens from two source codes will be treated as two sequences 

and then compared using string matching algorithm such as 

Rabin-Karp Greedy String Tiling (RK-GST) [36], Winnowing 

Algorithm [37], and Local Alignment [38].  

Source code token refers to lexical token extracted from 

source code using programming-language-specific lexer and 

parser. Such representation has been implemented in 

numerous works [26, 1, 16, 28, 29], including publicly 

available plagiarism detection tools [27, 37, 36], since it can 

be generated easily in a no time. However, despite its 

popularity, we would argue that such representation is weak 

against high level plagiarism attacks such as modifying 

control flow and encapsulating instructions as methods.  

Compiler-based representation refers to an intermediate 

form which is tightly-related with compiler processes. To the 

best of our knowledge, there are three works which explicit ly  

use such representation. These works are Chilowics et al’s 

work [31], which incorporates syntax tree, Ellis & Anderson’s 

work [32], which incorporates inorder-linearized parse tree, 

and Chilowics et al’s work [30], which incorporates call graph 

and information metrics.. Even though compiler-based 

representation is more effective than source code token for 

detecting similarity, such representation usually takes 

numerous processes to be generated, especially when given 

programming language grammar is rather complex. 

Low-level token refers to the content of executable file that 

is resulted from compiling source code. We would argue that 

such representation is more effective and efficient when 

compared to other representations  since low-level 

representation typically contains only semantic-preserving 

instructions and most syntactic sugars on that form are 

automatically translated into its original form [11, 4]. 

Generally speaking, related works that incorporate low-level 

tokens can be classified into twofold: works that are focused 

on Java programming language and works that are focused on 

.NET programming languages. On the one hand, works that 

are focused on Java programming language was initiated by Ji 

et al [35]. They extract low-level tokens, which is Java 

bytecode in their case, from source code executables and 

compare them directly using string similarity algorithm. Their 

work, at some extent, is extended by Karnalim [11] with 

several new contributions such as recursive-handled method 

linearization, instruction generalization, and instruction 

interpretation. On the other hand, works that are focused on 

.NET programming languages was initiated by Juričić [33]. 

He detects source code plagiarism by converting source codes 

into Common Intermediate Language (CIL) tokens and 

determining their similarity using Levenstein distance. Juričić 

et al [34] and Rabbani & Karnalim [4] then extend his work 

by replacing its similarity algorithm and modifying minor 

features. 

Instead of utilizing only either ABA or SBA for detecting 

source code plagiarism, three works combine both approaches 

in order to get more accurate result. Firstly, Menai & Al-

hassoun [39] displays source code similarity from both ABA 

and SBA at once as its result. Such displayed results are 

expected to help users for determining plagiarized codes 

according to given assignment. If given assignment allows a 

little modification, users can rely on ABA’s result. Otherwise, 

they can rely on SBA’s result. As we know, ABA is less 

sensitive than SBA for detecting plagiarism. Secondly, Engels 

et al [40] incorporates MOSS similarity result, which is a 

result from SBA, as one of its learning feature to classify 

whether two source codes are plagiarized to each other. The 

classification itself is determined based on 12 attributes and 

could be roughly classified into ABA. Finally, Ohno & Murao 

[41] combines programming style and structural similarity to 

determine plagiarism. A source code is considered as a 

plagiarized code iff its programming style is significantly 

different with programming style found on previously 

submitted assignments and its structure is similar to other 

source code. In their case, programming style is determined 

using ABA whereas structural similarity is determined using 

SBA.  

At some points, both ABA and SBA are not combined to 

get more accurate result. Yet, it aims for more efficient  

processing time by sacrificing its accuracy. Such approach is 

typically implemented on large-scale source code repositories  

where pure SBA is not applicable since it will take a lot of 

processing time. The work of Burrows et al [14] is an example 

which falls into this category. It incorporates ABA and SBA 

as two layers for determining plagiarism. ABA is conducted 

to select initial plagiarism candidates whereas  SBA is 

conducted to revalidate candidates given by ABA. In such 

manner, processing time required for detecting plagiaris m 

may be lower than pure SBA since not all source codes are 
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compared using SBA. However, it may also yield lower 

accuracy than pure SBA since not all potential candidates 

could be detected through ABA as its first layer. Mozgovoy et 

al [42], at some extent, shares similar idea with Burrows et al 

except that they incorporate different ABA and SBA.  

According to the fact that SBA outperforms ABA in most 

plagiarism cases [27, 16] and low-level tokens, at some extent, 

only represent source code semantic, this paper extends low-

level SBA proposed by Karnalim [11] for detecting source 

code plagiarism. It is preferred to other low-level SBAs since 

his work has considered many aspects for detecting plagiarism 

(e.g. recursive-handled method linearization). It is important 

to note that our work does not focus on the combination of 

ABA and SBA directly since we believe that a well-developed 

SBA may also indirectly enhance the effectiveness of such 

combined form. Such combination will be observed further on 

other works. 

Karnalim’s work [11] is extended by incorporating 

following contributions: 1) Flow-based token weighting is 

introduced to generate more-sensitive result; 2) Argument 

removal heuristic is introduced to generate more-precise 

method linearization; and 3) Invoked method removal is 

introduced to fasten processing time. These contributions are 

expected to enhance the effectiveness and efficiency of current 

state-of-the-art of low-level approach, which is Karnalim’s  

approach [11]. In terms of evaluation, our work will be 

evaluated based on four aspects which are the effectiveness 

toward controlled environment, the effectiveness toward 

empirical environment, time efficiency, and qualitative 

perspective. We would argue that these aspects could 

comprehensively exploit the characteristics of our proposed 

approach. 

III. METHODOLOGY 

A. Proposed System Flowchart 

Our proposed low-level approach detects source code 

plagiarism by following system flowchart given on Fig. 1. 

Such flowchart is generalized from Rabbani & Karnalim’s  

work [4] to make it applicable to other low-level SBAs. In our 

flowchart, detecting source code plagiarism is split into 

twofold, which are compilation and comparison phase. 

In compilation phase, each source code will be compiled  

to its respective executable form. Even though this mechanism 

seems to slow down execution time, Rabbani & Karnalim [4] 

shows that it is still more efficient when compared to state-of-

the-art SBA that uses source code token representation. Low-

level form tends to have fewer tokens than its source code. 

Thus, it will obviously generate fewer processes and shorter 

time to detect plagiarism. In fact, this compilation phase could 

be skipped if submitted assignments are formed as IDE-

generated projects. Most IDEs, such as Netbeans [43] or 

Visual Studio [44], generate executable files and store it on 

project directory each time source codes are compiled. Thus, 

with an assumption that most students tend to compile their 

code to recheck its correctness, IDE-generated executable files 

can be considered as a replacement of compilation phase 

result. 

In comparison phase, all source codes are compared to 

each other in either low-level or source code token format. On 

the one hand, low-level token format, which will be generated 

by low-level token extraction, will be used when both 

compared source codes successfully generate low-level codes. 

On the other hand, source code token format, which will be 

generated by source code token extraction, will be used when 

at least one of the compared codes are uncompilable. In such 

manner, our flowchart can still detect plagiarism on 

uncompilable source codes, even though its similarity result 

may not be as sensitive as the low-level one. After measured, 

all pairs which similarity exceeds plagiarism threshold will be 

returned as our flowchart output.  

 

 

Fig. 1. Proposed Flowchart for Detecting Source Code Plagiarism 

 

In our implementation, we apply several modifications on 

given flowchart as follows: 1) Our work is focused on Java 

programming language with Bytecode as its low-level form 

since we expand Karnalim’s work [11]; 2) Similarity  

measurement is implemented based on minimum matching 

similarity [45], using RK-GST algorithm with 2 as its 

Minimum Matching Length (MML); 3) Our work does not 

define plagiarism threshold as a static constant since such 

threshold might be varied per case, regarding to assignment 

difficulty and possible applied plagiarism attacks. We will 

leave the decision of the best plagiarism threshold to the user; 

4) Source code token extraction is conducted using ANTLR 

[46] and grammar listed on ANTLR GitHub repositories [47];  

and 5) Source code similarity measurement naively considers 

each source code as a long token sequence. 

B. Low-level Token Extraction 

For each executable file from source code, its low-level 

tokens are extracted through five sequential phases (which 

detail can be seen on Fig. 2): 1) Raw low-level tokens are 

extracted from executable file and grouped per method 

through method content extraction; 2) All tokens are weighted 

based on their execution probability and number of containing 

loop through flow-based token weighting; 3) Tokens which 

invoke recursive method will be removed through recursive-

method invocation elimination; 4) Tokens which invoke non-

recursive method will be replaced with their respective 

invoked-method content through method linearization; and 5) 

The contents of methods that have been invoked on other 
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methods are removed from low-level tokens through invoked 

method removal. 

 

 

Fig. 2. Low-level Token Extraction Phases 
 

It is important to note that our low-level token extraction 

is extended from Karnalim’s work [11] by modifying method 

linearization and incorporating two new phases, which are 

flow-based token weighting and invoked method removal. 

These new or modified phases are expected to enhance the 

effectiveness and efficiency of our proposed source code 

plagiarism detection. 

C. Method Content Extraction 

This phase is responsible to extract low-level tokens from 

executable file, which is a set of class files in our case. Low 

level tokens are extracted using Javassist [48, 49, 50] where 

tokens for each extracted method will be reinterpreted and 

generalized based on Karnalim’s work [11]. It is important to 

note that both reinterpretation and generalization are 

conducted to reduce the impact of over-technical 

implementation on low-level code. According to Karnalim’s  

work [11], such over-technical implementation might reduce 

the accuracy of low-level approach since some source code 

fractions can be converted into more than one low-level 

representation regarding to its technical circumstances. 

D. Flow-based Token Weighting 

This phase is responsible to weigh each token based on 

Control Flow Graph (CFG). In general, each token would be 

assigned with two weight constants which are execution 

probability and the number of containing loop. Execution  

probability refers to the possibility of given token to be 

executed based on method content’s CFG. It is represented as 

floating value between 0 to 1 inclusively where 0 refers to 

"never be executed" and 1 refers to "always be executed ". On 

the contrary, the number of containing loops represents how 

many loops are responsible for executing given token. It is 

represented as a non-negative number which is assigned as 0 

by default. Such default value means that no loop contains 

given token.  

A brief example about how flow-based token weighting 

works can be seen on Table I. On such example, a pseudo-

code of linear search algorithm is weighted based on execution 

probability and the number of containing loops . On the one 

hand, execution probability for most lines are assigned as 1, 

which means that such line will always be executed regardless 

of its input. Line 9, 11, and 13 are the only lines which 

probability is not 1. They are assigned with 0.5 since they only 

have 50% execution chance. They are only executed if given 

condition from their respective previous lines (line 8, 10, and 

12) has been fulfilled. On the other hand, the number of 

containing loops for most lines are assigned as 0 since they are 

not placed under a loop. Line 3, 4, 7, 8, and 9 are exceptional 

since they are assigned with 1 as its number of containing 

loop. Such constant means that these lines are placed under a 

loop.  

 
TABLE I 

FLOW-BASED TOKEN WEIGHTING ON LINEAR SEARCH ALGORITHM 

Line Algorithm Execution 
Probability 

The 
Number of 
Containing 

Loops 

1 n = input() 1 0 

2 lst = new Array() 1 0 

3 for i to n do 1 1 

4   lst[i] = input() 1 1 

5 s = input() 1 0 

6 idx = -1 1 0 

7 for i to n do 1 1 

8   if lst[i] = s do 1 1 

9     idx = i 0.5 1 

10 if idx = -1 do 1 0 

11   print("not found") 0.5 0 

12 else 1 0 

13   print("found") 0.5 0 

 

To assign weight constants for each token, our work 

extends Karnalim & Mandala’s weighting mechanism that 

generates CFG from regular sequence, goto, switch-case, and 

exception flow [8]. Execution probability for each token is 

assigned based on pseudo-execution toward resulted graph 

whereas the number of containing loops is assigned based on 

the number of detected nested loop. However, in our work, we 

simplify nested loop detection mechanism since our work 

needs no information about loop type. The simplified  

implementation of such mechanism works as follows: 

a) Generate all possible Strongly-Connected 

Components (SCC) from given CFG using Tarjan’s 

algorithm [51]. 

b) For each SCC, increment the number of containing 

loop on each of its token. 

c) Remove the first token for each SCC and do similar 

procedures (from a to c) recursively only on 

remaining SCC members, 

d) Repeat until all SCC are processed. 

Both weight constants will be used to enhance the 

sensitivity of our proposed similarity measurement. When 

comparing two tokens, our approach will not only compare 

mnemonic but also weight constants. Two tokens are 

considered as different tokens  even though they share similar 

mnemonic if they share different weight constants. In such 

manner, resulted similarity would be more accurate, resulting 

fewer false positive results. 

For a broader view about improved sensitiveness through 

flow-based weighting, we can see algorithm given on Table II 

that contain three print-hello instructions. Logically, these 
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instructions should not be considered as similar to each other 

since they are not always executed once each time the 

algorithm is invoked. print-hello on line 2 will be always 

executed once; print-hello on line 4 may be executed more 

than once; and print-hello on line 6 only has 50% probability 

to be executed. Using flow-weighting mechanism, those print-

hello instructions can be distinguished to each other, even 

though they share similar mnemonic, since they share 

different weight constants. 

 
TABLE II 

A CASE STUDY TO SHOW THE IMPACT OF FLOW-BASED WEIGHTING 

Line Algorithm 

1 s = input() 

2 print("Hello") 

3 for i to s do 

4   print("Hello") 

5 if s > 0 do 

6   print("Hello") 

 

Even though such weighting mechanism seems weak 

against dummy-flow plagiarism attacks when perceived from 

source code perspective, we would argue that such weighting 

mechanism offers more benefits when implemented on low-

level forms. Compilation phase, which is used to convert 

source code to low-level form, usually removes unnecessary 

flows and optimizes them directly. Therefore, most dummy-

flow plagiarism attacks will be removed and have no impact  

on low-level form. They only put some effects if applied flows 

rely on user input or method parameter. 

E. Recursive-Method Invocation Elimination 

This phase is responsible to remove all recursive-method 

invocation tokens from method content. Such tokens are 

eliminated in this phase since these methods will yield endless 

linearization processes at method linearization, the 4th phase 

of low-level token extraction. This phase adapts Karnalim & 

Mandala’s approach [8] which works in threefold. Firstly, all 

method invocations are converted to directed graph where A 

 B states that at least one token from method A invokes 

method B. Secondly, Strongly-Connected Components (SCC) 

from given graph are detected using Tarjan’s algorithm [51]. 

Finally, methods that are included on recursive SCC are 

marked as recursive methods and all method invocation tokens 

which invoke these methods are removed from method 

contents. 

F. Method Linearization 

This phase is responsible to linearize method contents by 

replacing all method invocations with their respective 

invoked-method content. It is extended from Karnalim’s work 

[11] by incorporating argument removal heuristic, a heuristic 

that is able to approximately remove tokens for preparing 

method invocation’s argument. According to Karnalim’s work 

[11], such tokens are the main reason why his work is weak 

against inlining and outlining method. Each time his approach 

linearizes a method by replacing method invocation token 

with its respective invoked-method content, tokens for 

preparing such method’s argument are still remained, causing 

numerous mismatched tokens. 

In Bytecode, preparing arguments for a method invocation 

is usually implemented by pushing values to runtime stack 

wherein the number of pushed values is typically similar with 

the number of method’s parameters. Therefore, our heuristic 

is implemented by simply removing N tokens before such 

invocation where N represents the number of invoked 

method’s parameters. It is important to note that object caller 

reference, which is implicitly embedded as an additional 

parameter for non-static method invocation, is also considered 

as a method parameter in our work. Consequently, when a 

non-static method is invoked, N will be assigned as the 

number of explicit method parameter + 1. 

In fact, our heuristic is not always accurate, especially for 

handling arguments that involve additional operations such as 

arithmetic operation, method invocation, or object creation. 

These arguments might generate more than one token per 

argument since their value is resulted from other process and 

that process might be represented as numerous tokens, 

resulting inaccurate argument detection for our heuristic. 

However, since detecting such tokens accurately will take a 

considerable amount of processing time, we exclude it from 

our consideration and just simply focus on the regular ones. 

Several examples of tokens for preparing arguments in 

Bytecodes can be seen in Table III where each example is 

assigned with a unique ID that starts with C. These examples  

are generated to provide a brief explanation about why our 

proposed heuristic will work accurately on most cases. Firstly, 

for handling C01 and C02, our heuristic will accurately  

 
TABLE III 

T HE EXAMPLES OF TOKENS FOR PREPARING ARGUMENTS 

ID Method Invocation  Generated Bytecode Tokens for Preparing 

Arguments 

C01 foo(); {static method that is invoked on its own class}  

C02 Class.foo(); {static method that is invoked on other class}  

C03 obj.foo(); {object method} ref_load 

C04 foo(5); {static method with an argument} numeric_const 

C05 foo(5,3); {static method with two arguments} numeric_const, numeric_const 

C06 foo(a,b); {static method with primitive arguments} primitive_load, primitive_load 

C07 foo(a,b); {static method with reference arguments} ref_load, ref_load 

C08 foo(a,b-2); {static method with arithmetic operation as its argument} primitive_load, primitive_load 

numeric_const, substraction 

C09 foo(foo2(x)); {static method with another static method invocation as its 

argument} 

primitive_load, invoke_method_foo2, 

primitive_load 

C10 foo(new Object()); {static method with object initialization as its argument} new, dup, invoke_constructor 
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remove no token since both cases invoke static method 

without parameter. Secondly, for handling C03, our heuristic 

will accurately remove one token since invoked method is an 

object method (i.e. non-static method). Thirdly, for handling 

C04-C07, our heuristic will accurately remove one, two, two, 

and two tokens respectively according to the number of 

explicit method parameters. Finally, for handling C08-C10, 

our heuristic will generate inaccurate number of removed 

arguments. It will remove two, two, and one tokens 

respectively, even though each method generates more tokens 

for preparing arguments due to their additional operation. C08 

generates 4 tokens since it requires to subtract b with 2; C09 

generates 3 tokens since it requires to invoke foo2; and C10 

generates 3 tokens since it requires to create a new object. We 

would argue that such inaccuracy is natural since these three 

cases incorporate additional operation while preparing their 

argument. 

Even though our heuristic is only able to accurately 

remove tokens on seven of ten cases described in Table III, we 

would argue that our heuristic is still considerably effective in 

practice. We believe that the last three cases are seldom used 

for obfuscating source code plagiarism since implementing  

these attacks requires high programming skill, which is not 

owned by most plagiarists. 

G. Invoked Method Removal 

This phase is responsible to remove the contents of 

invoked methods from low-level tokens. Such mechanism 

aims to speed up processing time on similarity measurement 

by reducing the number of compared token. It is applied by 

marking all methods that have been invoked on method 

linearization, the 4th phase of low-level token extraction, and 

remove contents related to these methods from low-level 

tokens. It is important to note that such mechanism will not 

affect the completeness of extracted tokens since the contents 

of invoked methods are implicitly defined on invoker method 

as a result of method linearization.  

H. Low-level Similarity Measurement 

Low-level similarity measurement defines similarity  

degree by summing local similarities resulted from paired 

method contents. We do not rely only on main method for 

measuring similarity since not all programming assignments 

are featured with main method (e.g. programming assignment 

to complete methods on abstract data type). In general, our 

similarity measurement works in threefold: 1) Low-level 

tokens are grouped per containing method before comparison; 

2) Methods from both codes will be paired to each other based 

on their method signature similarity; and 3) Similarity value is 

resulted by comparing the content for each method pair and 

merging the result.  

Firstly, low-level tokens for each source code are grouped 

per their respective containing method before comparison. 

Our work does not compare the whole tokens directly to speed 

up processing time. Similarity algorithm in this work, which 

is RK-GST, takes (𝑚𝑎𝑥(𝑁 , 𝑀))3 processes where N and M 

are the number of tokens in compared source codes. Thus, 

splitting tokens into smaller sub-sequences based on 

containing method will reduce processing time significantly 

since ∑ (𝑚𝑎𝑥(𝑁𝑖, 𝑀𝑖) )3 
𝑝
𝑖=1 < (𝑚𝑎𝑥(𝑁 , 𝑀))3 where p is the 

number of methods; ∑ 𝑁𝑖 
𝑝
𝑖=1 = N; and ∑ 𝑀𝑖 

𝑝
𝑖=1 = M. 

Secondly, methods from both codes will be paired to each 

other based on their method signature similarity . This 

mechanism is applied to speed up processing time by 

assuming that most programming assignments force students 

to follow a particular structure such as mandatory class and 

method names. In general, our proposed pairing mechanism 

works in twofold: 1) All possible pairs are ranked in 

descending order based on their Inverse Levensthein Distance 

(ILD). ILD is calculated as in (1) where dist(A,B) refers to 

Levensthein distance between both strings, A is the first 

method signature, and B is the second method signature. In 

such manner, the number of differences between both 

signatures will be inversely proportional to ILD. A method 

pair which members share similar signature will be assigned 

with a high score; and 2) Method pairs which member has 

been occurred on higher rank are removed to avoid redundant 

member on selected pairs.  

 

ILD(A,B) =
1

𝑑𝑖𝑠𝑡 (𝐴,𝐵)+1
                               (1) 

 

Finally, after all method pairs with the most similar 

signature have been selected, similarity degree is defined 

based on (2) where A and B refer to compared codes; length(A) 

and length(B) refer to the number of tokens in A and B 

respectively; Pairs refers to selected method pairs; and 

s(Pa,Pb) refers to the number of matched tokens  between Pa 

and Pb that is resulted from RK-GST algorithm. It is important 

to note that, in our work, two tokens are only considered as 

similar to each other if these tokens share similar mnemonic 

and weighting constant (i.e. constants that have been 

generated from flow-based token weighting, the 2nd phase of 

low-level token extraction). 

 

sim(A,B) =
∑ 𝑠(𝑃𝑎,𝑃𝑏)𝑃  ∈ 𝑃𝑎𝑖𝑟𝑠

∑ 𝑚𝑖𝑛 (𝑙𝑒𝑛𝑔𝑡ℎ (𝑃𝑎),𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑏) )𝑃 ∈ 𝑃𝑎𝑖𝑟𝑠
             (2) 

 

In fact, our similarity measurement is adapted from 

Karnalim’s similarity measurement [11], an extended version 

of minimum matching similarity [45] that is resistant against 

dummy-based plagiarism attacks (e.g. incorporating dummy 

statements, methods, or classes). However, we apply two 

modifications on such measurement which are: 1) Method 

signature similarity in Karnalim’s work [11] is replaced with 

ILD. Even though both mechanisms yield similar behavior, 

we believe that ILD is more intuitive since ILD score is 

proportional to signature similarity. The higher its score, the 

more similar both signatures will be. It is different with 

Karnalim’s signature similarity where its score is inversely 

proportional to signature similarity. The lower its score, the 

more similar both signatures will be; and 2) A stricter rule is 

applied for token similarity. Two tokens are considered as 

similar to each other iff their mnemonic and flow-based 

weighting constants are similar.  

IV. CONTROLLED EFFECTIVENESS EVALUATION 

This section aims to revalidate the advantages of our 

proposed approach in a controlled environment. In general, 
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there are 11 advantages that will be evaluated. Eight of them 

are adopted advantages of Karnalim’s approach [11], a 

predecessor of our approach, while the other three are our new 

advantages, which are flow-based token weighting, argument 

removal heuristic, and invoked method removal. For each 

advantage, artificial test case(s) which exploit such advantage 

will be carefully designed and used to check whether such 

advantage is prominent or not.  

A. Evaluating the Advantages of Karnalim’s Approach 

Based on Karnalim’s work [11], we have extracted 8 

advantages of his approach which details including its 

controlled evaluation cases can be seen on Table IV. For 

convenience, each advantage will be assigned with a unique 

ID that starts with KAR and each evaluation case will be 

referred as EKAR + advantage ID + case number. All 

evaluation cases are generated based on Karnalim’s original 

source codes that were used to generate plagiarism attacks 

[11]. These codes are extracted from Liang’s book [52] and 

cover 7 programming materials which are Output, Input, 

Branching, Loop, Method, Array, and Matrix. They will be 

referred as ORIG1 to ORIG7 respectively. 

In order to evaluate adopted advantages of KArnalim’s 

Approach (KAA), the effectiveness of such approach will be 

compared to Standard Lexical Token approach (SLT), a state-

of-the-art approach for detecting source code plagiarism. SLT 

works by converting both source codes into lexical token 

sequences, removing the comments, and comparing them to 

each other using a particular similarity algorithm. However, to 

simplify result justification in this evaluation, our SLT will use 

similar similarity algorithm with KAA. It will use minimum 

matching similarity [45], using RK-GST algorithm with 2 as 

its MML. 

In terms of measuring effectiveness, according to the fact 

that low-level representation (in our case, Bytecodes) yields 

fewer tokens than the source code itself [11, 4], comparing 

both scenarios based on normalized similarity may be unfair. 

One mismatched token on low-level approach (i.e. KAA) may  

lower its normalized similarity significantly due to its short 

token length. Therefore, a new similarity measurement which 

does not rely heavily on token length is proposed for 

comparison purpose. It is called Inverse number of 

Mismatched Token (IMT) and resulted from (3). In general, 

IMT works by negating the number of Mismatched Token 

(MT) from both sequences (A and B). It will yield a non-

positive integer as its output which is ranged from -∞ to 0. The 

higher IMT value generated from comparing two sequences, 

the more similar these sequences are. However, it is important 

to note that zero IMT (the highest possible IMT value) does 

not mean that both sequences are exactly similar. It only 

means that all tokens from shorter sequence are found on the 

longer one, as it is known that MT for each case is generated 

by subtracting the minimum length of both sequences with the 

number of matched tokens. 

 

IMT(A,B) =-1 * MT(A,B)                        (3) 

  

Our work does not incorporate division-based inverse 

mechanism (e.g. inverse mechanism as in our ILD) since we 

intend to generate IMT distribution that has similar pattern as 

in MT. In division-based mechanism, the distance between 

points is not uniform and gets smaller when the given values 

are extremely large. For example, suppose there are 3 values 

which are 1, 2, and 3. If inversed in division-based manner, 

delta value between the 1st and 2nd inversed value (1/1 - 1/2 = 

1 - 0.5 = 0.5) will be not uniform with delta value between the 

2nd and 3rd inversed value (1/2 - 1/3 = 0.5 - 0.33 = 0.17), even 

though the distance of their original delta value is uniform. 

Such inversing mechanism is quite different with our inverse 

mechanism, which only negates the MT, since negation 

operation will generate similar distance between points as in 

MT regardless of point’s original position. 

IMT result for each evaluation case from Table IV can be 

seen in Fig. 3. Vertical axis represents IMT value for each case 

whereas horizontal axis represents the evaluation cases. In 

general, KAA tends to generate higher or equal IMT than SLT 
 

TABLE IV 
KARNALIM’S ADVANTAGES WITH THEIR CONTROLLED EVALUATION CASES 

ID Advantage Evaluation Cases 

KAR1 Proposed approach is not affected by 
whitespace modification 

By considering ORIG7 as original code, plagiarized code is generated by removing all whitespaces. 
This case will be referred as EKAR11. 

KAR2 Proposed approach is not affected by 
comment modification 

By considering ORIG7 as original code, plagiarized codes are generated by adding inline comment for 
each statement. The number of inline comment will be increased per evaluation case from one to four 
per statement. These cases will be referred as EKAR21 to EKAR24 respectively 

KAR3 Proposed approach is not affected by 

delimiter modification 

By considering ORIG7 as original code, plagiarized codes are generated by adding extra semicolon for 

each statement. The number of semicolon will be increased per evaluation case from one to four per 
statement. These cases will be referred as EKAR31 to EKAR34 respectively. 

KAR4 Proposed approach, at some extent, is 

not affected by identifier renaming 

For each Karnalim’s original source code except ORIG1, plagiarized codes are generated by renaming 

all variable and method names. These cases will be referred as EKAR41 to EKAR46 respectively. 
KAR5 Proposed approach is not affected by 

semantically-similar syntactic sugar 
replacement 

By considering ORIG4 as original code, plagiarized codes are generated by replacing while syntax with 
either for or do while syntax. These cases will be referred as EKAR51 and EKAR52 respectively. 

KAR6 Proposed approach handles inlining 
and outlining method 

Original code is ORIG3 with all local variables are replaced with the global ones. Plagiarized codes are 
generated by encapsulating statements into nested methods, starting from a simple method to 3-level 
nested methods. These cases will be referred as EKAR61 to EKAR63 respectively. 

KAR7 Proposed approach ignores dummy 

methods 

Original code is ORIG3 with all local variables are replaced with the global ones. Plagiarized codes are 

generated by adding dummy method(s). The number of dummy method(s) will be increased per 
evaluation case from one to three methods. These cases will be referred as EKAR71 to EKAR73 
respectively. 

KAR8 Proposed approach ignores dummy 

global variables 

By considering ORIG3 as original source code, plagiarized codes are generated by adding global object 

variable(s). The number of global object variable(s) will be increased per evaluation case from one to 
three variables. These cases will be referred as EKAR81 to EKAR83 respectively. 
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in all cases. Therefore, it can be roughly stated that there is no 

contradicting view about Karnalim’s  advantages mentioned in 

Table IV. Karnalim’s approach is, in general, more effective 

than state-of-the-art approach (SLT) when evaluated in 

controlled environment. 

 

 

Fig. 3. Inverse Number of Mismatched Token Toward Evaluation Cases 

Listed on Table IV 

 

From cases about the first three advantages (EKAR11 to 

EKAR34), both KAA and SLT yield zero IMT on all cases. 

They are resistible to whitespace, comment, and delimiter 

modification, regardless of how many modifications are 

involved. On the one hand, KAA is resistible to such 

modifications since it deducts similarity based on low-level 

form (i.e. Bytecodes). It has excluded whitespace, comment, 

and delimiter during compilation phase. On the other hand, 

SLT is resistible to such modifications due to its excluding 

mechanism and minimum matching similarity. Whitespace 

and comment are handled by excluding them at conversion 

phase whereas extra delimiters are handled by incorporating 

minimum matching similarity that ignores extra tokens. Even 

though both scenarios yield similar result, we would argue that 

KAA is more effective than SLT for handling such 

modification since KAA’s excluding mechanism is 

implemented automatically in programming language 

compiler. It need no additional effort for reimplementation. 

From cases about identifier renaming (EKAR41 to 

EKAR46), KAA is resistible to such attacks due to Bytecode’s 

local variable renaming and method signature similarity . 

Bytecode’s local variable renaming will rename all local 

variables with technical names according to their sequential 

order when the source code is compiled into Bytecodes. Such 

mechanism enables KAA to handle identifier renaming on 

local variables since both original and renamed variable name 

will be replaced with similar technical name as long as they 

firstly occur in similar ordinal position. Method signature 

similarity, on the contrary, will consider two approximately -

similar method signatures as similar to each other as long as 

such pair yields the highest ILD among related pairs . Such 

mechanism, at some extent, could handle small modification  

on method name, especially in our case. An evidence for this 

case is KAA result on EKAR44, a case which plagiarized code 

involves method name modification. It still generates zero 

IMT since the method name is only modified by adding a 

character as its additional postfix.  

As seen in Fig. 3, SLT seems fluctuated in EKAR41 to 

EKAR46 since SLT considers each renamed identifier as a 

mismatched token and the number of renamed identifier in 

each case varies. SLT fails to consider renamed identifier as a 

match with its original form since it only distinguishes 

identifier based on its mnemonic. Such issue, however, is 

handled in KAA with local variable renaming and method 

signature similarity. Thus, according to such finding, it can be 

roughly stated that KAA is more effective than SLT for 

handling identifier renaming. 

From cases about semantically-similar syntactic sugar 

replacement (EKAR51 and EKAR52), KAA outperforms 

SLT in general since it yields higher IMT on one case while 

generating similar IMT on the other one. On the one hand, in 

EKAR51, KAA generates zero IMT since both while and for 

syntax generate similar bytecode sequence due to their similar 

semantic. Such high similarity, however, cannot be achieved 

by SLT since SLT determines token similarity based on source 

code form and both while and for syntax share different form. 

On the other hand, in EKAR52, KAA cannot generate zero  

IMT since while and do-while syntax do not share identical 

semantic. By definition, both syntaxes actually generate 

different control flow. while syntax checks the condition 

before performing the action while do-while syntax do the 

action once before checking the condition for future iteration. 

Despite such unidentical generated control flow, KAA is still 

as effective as SLT for handling such replacement.  

From cases about inlining and outlining method (EKAR61 

to EKAR63), both KAA and SLT yield zero IMT in all cases. 

In other words, method encapsulation is handled well by both 

scenarios, regardless of how many nested method 

encapsulations are involved. SLT is able to generate high IMT 

on such cases since it ignores pattern context at comparison 

phase. It could detect similar pattern from any location of 

given source codes. In our cases (EKAR61 to EKAR63), SLT 

matches tokens from main method to tokens from 

encapsulating method, resulting no mismatched tokens (i.e. 

zero IMT). Such zero IMT is also achieved by KAA even 

though it only determines similarity locally per method. When 

observed further, KAA can generate such result thanks to its 

method linearization. For each method body, method 

linearization will replace each method invocation with its 

respective method content. Consequently, even though several 

instructions are encapsulated as a method and located 

separately outside the compared method, KAA is still able to 

consider encapsulated tokens as a part of compared method 

body. We would argue that such phenomenon makes KAA 

becomes more beneficial than SLT for handling method 

encapsulation since it guarantees that the matched sequences 

are from similar context. 

From cases about dummy methods (EKAR71 to 

EKAR73), KAA generates zero IMT for all cases since it only 

determines similarity from paired methods and ignores all 

dummy methods that has no matching pair in the original 

code. SLT, on the contrary, should also yield similar result 

thanks to minimum matching similarity. However, it generates 

-1 IMT in all cases due to RK-GST limitation. A matched 

subsequence with length 1 will be considered as a mismatch 

since its length is shorter than MML (which is 2 in our case). 

Therefore, we would argue that KAA is more beneficial than 

SLT for handling dummy methods since it outperforms SLT 

on such cases.  

From cases about dummy global variables  (EKAR81 to 

EKAR83), both KAA and SLT yield zero IMT in all cases. 
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Thus, it can be stated that dummy global variables have no 

impact on both scenarios. On the one hand, KAA is resistible 

to such attack since it only considers method content for 

comparison. It automatically ignores all global variables. On 

the other hand, SLT is resistible to such attack due to 

minimum matching similarity. Using such matching 

similarity, dummy global variables will be considered as extra 

tokens that will be excluded before comparison. Despite 

similar IMT results , we would argue that KAA is more 

beneficial than SLT for handling dummy global variables 

since it excludes such tokens before comparison phase, 

resulting shorter token sequences for comparison. 

By and large, it can be roughly stated that declared 

advantages of KAA are prominent when compared to SLT. 

However, it is important to note that not all prominences are 

explicitly shown as higher IMT than SLT. Some of them are 

shown implicitly by providing more beneficial characteristics  

such as contextual similarity or faster processing time. 

B. Evaluating the Advantages of Flow-based Token 

Weighting 

Flow-based token weighting aims to enhance the 

sensitivity of Karnalim’s approach  by considering control 

flow weight while comparing token. Two tokens are only 

considered as similar to each other iff its mnemonic and 

control flow weight constants are exactly similar. To evaluate 

such sensitivity, we incorporate two scenarios based on the 

existence of such weighting mechanism. The first one, which 

is referred as Weighted Low-Level approach (WLL), refers to 

our proposed approach in this paper whereas the second one, 

which is referred as Unweighted Low-Level approach (ULL), 

refers to the proposed approach without flow-based token 

weighting. We could state that flow-based token weighting 

enhances the sensitivity of low-level approach iff WLL 

outperforms ULL in terms of the number of Mismatched 

Token (MT) toward our controlled evaluation cases , which 

only modification is about changing token scope. 

In general, controlled evaluation cases are generated based 

on 7 original source codes that were used to generate 

plagiarism attacks in Karnalim’s work [11]. For each original 

source code, plagiarized codes will be generated in twofold. 

On the one hand, some of them will be generated by moving 

each variable declaration gradually to larger scope where each 

movement is considered as a new plagiarized code. It will start 

with the first variable declared in the source code and continue 

to other variable right after the first variable reaches the global 

scope. Evaluation cases generated in this manner are expected 

to evaluate the sensitivity of flow-based token weighting 

toward gradual slight token scope modification. These cases 

will be referred as EFLA cases. On the other hand, some of 

them will be generated by encapsulating the content of each 

method with a 5-times-iteration traversal, that is represented 

as a for syntax. Each original source code will generate one 

plagiarized code through such mechanism. Evaluation cases 

generated in this manner are expected to evaluate the 

sensitivity of flow-based token weighting toward numerous 

token scope modifications at once. These cases will be 

referred as EFLB cases. 

The detail of generated evaluation cases per original 

source code can be seen in Table V. In general, there are 29 

evaluation cases where 22 of them are generated based on 

moving variable declaration (EFLA cases) and the rest of them 

are generated based on 5-times-iteration traversal 

encapsulation (EFLB cases). It is important to note that EFLA 

cases are generated unevenly per original source code since 

the number of declared variables in each original source code 

varies. 

MT result for EFLA cases from Table V can be seen in 

Fig. 4. Vertical axis represents MT value for each case 

whereas horizontal axis represents EFLA cases. In most cases, 

both WLL and ULL generate zero MT, even though WLL is 

expected to generate higher MT than ULL. Such phenomenon 

is natural since most EFLA modifications are about moving 

in-method outermost variable declaration to global variable 

(i.e. class attribute). Therefore, since WLL assumes method 

scope as the most outside influenced layer and global variables 

are automatically included on such layer, WLL is insensitive 

to such modifications, resulting similar MT as in ULL. 

Nevertheless, WLL still outperforms ULL in 6 cases, which 

are EFLA52, EFLA53, EFLA73, EFLA74, EFLA75, and 

EFLA76, since it can detect the movement of a variable as a 

mismatched token. In these cases, a variable declaration is 

moved from loop body to its larger scope. Thus, since WLL 

will generate different weight constants for token in and out of 

a loop, WLL will consider moved variable declaration as 

different token when compared to its original form.   

According to the fact that plagiarized code for EFLA cases 

are generated by moving variable declarations gradually per 

scope, each case should generate higher MT than its 

predecessor as long as both cases are originated from similar 

source code. However, as seen in Fig. 4, some of them still 

generate similar MT with its predecessor. Each approach has 

its own cause for such phenomenon. On the one hand, in WLL, 

some cases generate similar MT with its predecessor since the 

number of scope-modified token on both cases are similar, 

considering the fact that moving variable declaration does not 

always change the number of scope-modified token, 

 
TABLE V 

ORIGINAL SOURCE CODES WITH THEIR GENERATED EVALUATION CASES 

Original Source Code EFLA cases EFLB Cases 

ORIG2 0 case since there is no variable declaration involved on such task. 1 case which will be referred as EFLB1. 

ORIG2 4 cases which will be referred as EFLA21 to EFLA24 respectively. 1 case which will be referred as EFLB2. 

ORIG3 5 cases which will be referred as EFLA31 to EFLA35 respectively. 1 case which will be referred as EFLB3. 

ORIG4 1 case which will be referred as EFLA41. 1 case which will be referred as EFLB4. 

ORIG5 3 cases which will be referred as EFLA51 to EFLA53 respectively. 1 case which will be referred as EFLB5. 

ORIG6 3 cases which will be referred as EFLA61 to EFLA63 respectively.  1 case which will be referred as EFLB6. 

ORIG7 6 cases which will be referred as EFLA71 to EFLA76 respectively. 1 case which will be referred as EFLB7. 
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especially when such variable has been moved before. 

EFLA53, with EFLA52 as its predecessor, is an example of 

such phenomenon. On the other hand, in ULL, some cases 

generate similar MT with its predecessor since variable 

declaration involved in these cases  generates more than one 

token in low-level form and such tokens can be accurately 

detected through RK-GST algorithm. EFLA22, with EFLA21 

as its predecessor, is an example of such phenomenon. 

 

 

Fig. 4. The Number of Mismatched Token Toward EFLA cases Listed on 
Table V 

 

MT result for EFLB cases from Table V can be seen in 

Fig. 5. Vertical axis represents MT value for each case 

whereas horizontal axis represents EFLB cases. ULL 

generates zero MT on all cases since it ignores scope 

modification. It considers token similarity only based on token 

mnemonic. Therefore, since EFLB plagiarized codes are 

generated by changing token’s scope through control flow 

weight, ULL cannot differentiate plagiarized code from its 

original code. WLL, on the contrary, generates fluctuated MT 

results since the number of scope-modified tokens per case is 

varied and all scope-modified tokens will be considered as 

mismatches to their original form due to different flow-based 

weight constants. In our case, all tokens inside 5-times-

iteration traversal in plagiarized code are considered as 

mismatches to its paired token in original code since such 

traversal changes the number of containing loop of given 

tokens. It is important to note that incorporated 5-times-

traversal on plagiarized code is not considered as mismatched 

tokens on both WLL and ULL due to minimum matching 

similarity that automatically excludes extra tokens from 

comparison. 

 

 

Fig. 5. The Number of Mismatched Token Toward EFLB cases Listed on 
Table V 
 

To sum up, it can be roughly stated that flow-based token 

weighting could enhance the sensitiveness of low-level 

approach since WLL, an approach with such weighting, can 

detect token scope modification in most cases while ULL, an 

approach without such weighting, cannot detect given 

modification in all cases. We would argue that such 

sensitiveness is important to reduce the number of false 

positive plagiarism result, as it is known that tokens in 

different context should not be considered as similar to each 

other, even though they share similar mnemonics. 

C. Evaluating the Advantages of Argument Removal 

Heuristic 

Argument removal heuristic aims to enhance the 

effectiveness of method linearization by removing remained  

argument-preparation tokens for each method invocation. To 

evaluate such mechanism, controlled evaluation cases which 

plagiarism attack is about encapsulating statement(s) as 

method(s) with various parameter(s) are generated. We expect 

our heuristic to effectively exclude most remained argument-

preparation tokens on these cases. 

In general, our controlled evaluation cases  consist of 14 

cases which are categorized into twofold: cases to simulate the 

increasing number of argument and cases to simulate 

argument preparation on various method invocations. On the 

one hand, cases to simulate the increasing number of argument 

consist of 4 cases, namely EARG01 to EARG04 respectively. 

These cases are generated from ORIG3, a Karnalim’s original 

source code which covers branching material, where its 

respective plagiarism attack is generated by encapsulating 

partial statements as a static method with zero to three 

primitive-type parameters respectively. On the other hand, 

cases to simulate argument preparation on various method 

invocations consist of 10 cases, namely EARG05 to EARG14 

respectively. These cases are generated from Hello World 

program where each case is designed to simulate method 

invocations defined in Table III (C1-C10) respectively.  

For each case, we will check how many argument-

preparation tokens are removed as a result of incorporating 

argument removal heuristic. Two scenarios will be taken into 

consideration which are a scenario that involves argument 

removal heuristic and a scenario that does not involve it. Both 

scenarios are adapted from our proposed approach which 

involves no flow-weighting mechanism, namely Unweighted 

Low-Level approach (ULL). In fact, the result of given 

heuristic is not affected by flow-weighting mechanism. Yet, 

we choose to ignore such weighting mechanism so that the 

reader could easily understand the heuristic’s benefit without 

being confused with other aspects . 

The number of removed argument-preparation token for 

each evaluation case can be seen in Fig. 6. Vertical axis  

represents the number of removed argument-preparation 

token whereas horizontal axis represents the evaluated cases. 

In general, the behavior of argument removal heuristic 

matches perfectly with our expectation. It accurately removes 

most argument-preparation tokens, resulting fewer tokens 

involved in comparison phase.  

The results of EARG01 to EARG04 show that increasing 

number of argument can be handled with our heuristic. It 

accurately removes argument-preparation tokens as many as 

the number of argument. It removes no token at EARG01, 
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which involves no argument, and three tokens at EARG04, 

which involves three arguments.  

 

 

Fig. 6. The Number of Removed Argument-Preparation Token Toward 
Cases Designed to Evaluate The Advantages of Argument Removal 
Heuristic 

 

The results of EARG05 to EARG14 show that our 

heuristic works as expected toward method invocations 

defined in Table III. It can accurately remove argument-

preparation tokens from 7 cases (EARG05 to EARG11) while 

removing only some of them on the remaining 3 cases 

(EARG12 to EARG14). On the one hand, our heuristic can 

accurately remove such tokens on 7 cases since these cases 

involve no additional operation while preparing the 

arguments. These cases only generate one argument-

preparation token for each involved argument. On the other 

hand, our heuristic can only remove some argument-

preparation tokens on remaining 3 cases since these cases 

involve additional operation while preparing the arguments. 

EARG12 put a reduction operation on the 2nd argument; 

EARG13 put a method invocation as its argument; and 

EARG14 put an object creation as its argument. The existence 

of such additional operations violates our heuristic assumption 

which claims that the number of tokens for preparing 

argument will be in-sync with the number of method 

parameter. Therefore, it is natural that our heuristic cannot 

work properly on such cases. 

By and large, according to our controlled evaluation, two 

findings can be deducted. On the one hand, argument removal 

heuristic can remove argument-preparation tokens correctly as 

long as there is no additional operation involved while 

preparing the arguments. These tokens can be removed 

regardless of its form, either a direct constant, a primitive 

variable, or even a reference variable. On the other hand, 

incorporating additional operations in arguments might lead 

our heuristic to remove only some of the argument-preparation 

tokens. As it is known that most additional operations will 

generate more than one token for each argument while our 

heuristic only removes one token per argument. According to 

these findings, we would argue that our heuristic could 

enhance the effectiveness of method linearization since most 

argument-preparation tokens are removed through given 

mechanism. 

D. Evaluating the Advantages of Invoked Method Removal 

Invoked method removal aims to speed up processing time 

on similarity measurement by removing the content of all 

invoked methods from low-level tokens. To evaluate such 

mechanism, controlled evaluation cases which plagiaris m 

attack is about encapsulating main-method statement(s) as 

method(s) are generated. For each case, its plagiarized code is 

generated by encapsulating statement(s) on ORIG3 as 

method(s) where one statement will be encapsulated as one 

method. The number of encapsulated statement per case is 

varied from 1 to 10 where each number will be assigned 

exclusively to one case and each case will be referred as EIMR 

+ the number of encapsulated statement. From these 

evaluation cases, we expect invoked method removal to 

accurately exclude the content of additional methods found on 

plagiarized source code from low level tokens, considering the 

fact that these methods have been invoked on the main 

method. 

The number of removed invoked methods toward our 

controlled evaluation cases can be seen on Fig. 7. It is clear 

that invoked method removal works as expected since it 

accurately removes all additional methods from plagiarized  

code. Both actual and expected number of removed method in 

all cases are similar. We believe that such high accuracy could 

cut up processing time on similarity measurement since not all 

method content will be compared through RK-GST algorithm. 

Some of them will be excluded prior to comparison due to our 

invoked method removal mechanism. 

 

 

Fig. 7. The Number of Removed Invoked Method Toward Cases Designed 
to Evaluate The Advantages of Invoked Method Removal 

V. EMPIRICAL EFFECTIVENESS EVALUATION 

This section aims to revalidate the advantages of our 

proposed approach in an empirical environment. In general, 

there are 11 advantages that will be evaluated in this section. 

The first eight advantages are adopted from Karnalim’s  

approach [11] whereas the others are our new contributions. 

Each advantage will be evaluated based on empirical dataset 

which plagiarism attack favors such advantage.  

The detail of each advantage with its favoring plagiarism 

attack and original source code can be seen on Table VI. Each 

advantage will be featured with a unique ID that is prefixed  

with ADV and its original source code will be taken from 

Karnalim’s original source codes [11]. For each advantage, its  

original source code will be plagiarized by 11 lecturer 

assistants by incorporating its favoring plagiarism attack. 

While plagiarizing the code, lecturer assistants should not 

change source code semantic. However, they could use other 

attacks if needed, as long as such attacks are used to support 

predefined favoring plagiarism attack. It is also worth to note 

that since the 6th and the 11th advantage refer to exactly-similar 

plagiarism attack, both of them will be merged as one  
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TABLE VI 
T HE ADVANTAGES OF PROPOSED APPROACH WITH THEIR FAVORING PLAGIARISM ATTACK AND ORIGINAL SOURCE CODE 

ID Advantage Plagiarism Attack Original Source 
Code 

ADV01 Proposed approach is not affected by whitespace modification Modify source code indentation ORIG7 

ADV02 Proposed approach is not affected by comment modification Modify source code comments ORIG7 

ADV03 Proposed approach is not affected by delimiter modification Modify source code delimiters ORIG7 

ADV04 Proposed approach, at some extent, is not affected by identifier 
renaming 

Modify source code identifier names ORIG7 

ADV05 Proposed approach is not affected by semantically-similar 
syntactic sugar replacement 

Replace syntactic sugar with other 
semantically-similar form 

ORIG4 

ADV06 Proposed approach handles inlining and outlining method Encapsulate source code fragments Original code in 
EKAR63 

ADV07 Proposed approach ignores dummy methods Add dummy methods Original code in 
EKAR73 

ADV08 Proposed approach ignores dummy global variables Add dummy global variables  ORIG3 

ADV09 Proposed approach is sensitive to control flow change Modify instruction scope ORIG7 

ADV10 Proposed approach, at some extent, enhances the effectiveness 
of method linearization by removing argument-preparation 
tokens 

Encapsulate instructions as a method 
with numerous parameters 

Original code in 
EARG14 

ADV11 Proposed approach enhances the efficiency of similarity 
measurement by removing the content of all invoked methods 
before comparison 

Encapsulate source code fragments Original code in 
EKAR63 

plagiarism attack, resulting only 10 plagiarism attacks that 

will be used by each lecturer assistant. 

In total, there are 110 evaluation cases that will be used in 

this evaluation. Such cases are classified to 10 plagiarism 

attacks wherein each attack is conducted by 11 lecturer 

assistants. For easy reference at the rest of this paper, each case 

will be assigned with an ID that is formed from the 

concatenation of E, advantage ID, and lecturer assistant ID. 

For instance, EADV0102 means that such case is generated 

for ADV01 advantage by lecturer assistant with 02 as his/her 

ID. 

Before used as our dataset, plagiarism cases collected from 

lecturer assistants are observed manually to ensure whether 

such cases follow given instructions or not. As a result, 8 cases 

are removed since their main attack is not in-sync with our 

request. These cases are EADV0302, EADV0502, 

EADV0801, EADV0802, EADV0807, EADV0809, 

EADV0811, and EADV0904. 

A. Evaluating the 1st and 8th Advantage: Adopted 

Advantages from Karnalim’s Approach  

In order to evaluate the first eight advantages, which are 

adopted from Karnalim’s approach  [11], two scenarios are 

proposed which are WLL and SLT. WLL refers to our 

proposed approach while SLT refers to state-of-the-art 

approach that was used in our controlled evaluation to 

evaluate the impact of Karnalim’s approach (KAA). For each 

advantage, its existence is proved to be prominent iff WLL 

generates higher Inverse number of Mismatched Token (IMT) 

than SLT. If both approaches generate similar IMT, such 

advantage is only considered to be prominent iff WLL has at 

least one implicit benefit when compared to SLT.  

Evaluation analysis provided in this section will be 

presented per advantage where each advantage usually covers 

up to 11 plagiarism cases. It will be started from the 1st 

advantage, which is about whitespace modification, to the 8th 

advantage, which is about dummy global variable. Beside 

displaying the result of each advantage toward given cases, we 

will also provide a brief description regarding to the 

characteristic of implemented attacks and discuss their impact 

toward our advantages. Such information is expected to give 

a clear view toward how our advantages work to the reader. 

From cases about whitespace modification (EADV0101 to 

EADV0111), we found that involved plagiarism attacks can 

be roughly classified into threefold which are: 1) Stripping all 

removable whitespaces; 2) Replacing each whitespace with 

multiple whitespaces or vice versa; and 3) Adding or 

removing whitespaces unevenly. According to our manual 

observation toward given cases, the latter attack is the most 

frequent one to occur. We believe that such high occurrence is 

natural since such attack is the fastest one to be conducted 

when compared to other whitespace-based attacks.  

Both WLL and SLT generates zero IMT in all cases  about 

whitespace modification. Such finding is supported by the fact 

that whitespace is automatically excluded by both approaches, 

resulting no effect to generated IMT. However, we would 

argue that the 1st advantage, which claims that proposed 

approach is not affected by whitespace modification, is 

prominent despite similar IMT result for both approaches 

since WLL’s whitespace removal mechanism is conducted 

automatically at compilation phase, resulting no additional 

effort for reimplementation. 

From cases about comment modification (EADV0201 to 

EADV0211), we found that most plagiarism attacks are about 

changing natural-language terms used in given comment, 

adding new comments, or removing old comments. Only a 

few of them are about changing comment format from one-

lined to multiple-lined form or vice versa. We believe that 

such finding is natural since changing comment format 

requires technical knowledge about how to write source code 

comment. It is far more difficult to be conducted when 

compared to other comment-based attacks. 

Both WLL and SLT still generates zero IMT in all cases  

about comment modification since, similar with whitespace, 

comment is also excluded automatically before comparison 

for both approaches. Nevertheless, despite similar IMT result 

for both approaches, we would argue that the 2nd advantage, 

which claims that proposed approach is not affected by 

comment modification, is prominent since WLL applies such 
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removal mechanism automatically at compilation phase, 

resulting no additional effort for reimplementation. 

From cases about delimiter modification (EADV0301 to 

EADV0311), most plagiarism attacks are focused on inserting 

semicolon, bracket, and/or curly bracket in various position. 

From our perspective, inserting semicolon is the most obvious 

attack since semicolon has no other function except that for 

separating statement and putting it not at the end of source 

code statement will be seen as an obvious  attempt to 

plagiarize. It is quite different with inserting bracket or curly 

bracket where the plagiarists could argue that such delimiters  

are used by them to categorize the statements in clearer 

manner. 

IMT result for both WLL and SLT toward cases about 

delimiter modification can be seen in Fig. 8. WLL is not 

affected by such modification since all delimiters will be 

excluded at compilation phase. It generates zero IMT in all 

cases. SLT, on the contrary, is considerably affected by such 

modification since some plagiarized codes split original 

tokens into several single tokens by inserting additional 

delimiter between them. The split tokens will not be detected 

as a match by SLT’s RK-GST algorithm since their respective 

length (which is 1) is lower than RK-GST minimum matching 

length (which is 2). The most extreme result generated by such 

mechanism is found on EADV0305, a case which generates 

the lowest IMT. In such case, delimiters are embedded on all 

possible positions to split original source code tokens, 

resulting 6 single original tokens that are detected as 

mismatches by SLT’s RK-GST algorithm. In short, it can be 

roughly stated that the 3rd advantage, which claims that 

proposed approach is not affected by delimiter modification, 

is prominent since WLL generates higher IMT than SLT on 

some cases.  

 

 

Fig. 8. The Inverse Number of Mismatched Token on Evaluation Cases 
about Delimiter Modification 

 

From cases about identifier renaming (EADV0401 to 

EADV0411), most plagiarism attacks are focused on 

renaming method and variable identifier. Some plagiarists 

rename it with a slight modification, such as adding a 

supplementary prefix character for each identifier, while the 

others put a tremendous modification, such as replacing 

existing identifier name with an extremely long name. 

However, regardless of its form, all identifier renaming will 

only affect IMT based on the number of renamed identifier, as 

it is known that both approaches do not consider the number 

of character-based modification on their comparison metric.  

IMT result for both WLL and SLT toward cases about 

identifier renaming can be seen in Fig. 9. WLL generates zero 

IMT in all cases since it is not affected by identifier renaming  

involved on given cases. All renaming mechanism only targets 

local variable and method, which are handled quite well by 

WLL through Bytecode’s local variable renaming and method 

signature similarity. Bytecode’s local variable handles local 

variable renaming while method signature similarity handles 

method renaming. Both of them work in similar fashion as in 

KAA. SLT, on the contrary, generates fluctuated IMT since it 

only determines identifier similarity in a naïve manner. Two 

identifiers are considered as similar to each other iff both 

identifiers share similar mnemonic. Consequently, each 

renamed identifier will be considered as different token when 

compared to its original token, resulting numerous 

mismatched tokens. SLT generates the worst result on 

EADV0403, EADV0404, EADV0407, and EADV0409 since, 

in these cases, all renamable identifiers are renamed, resulting 

-31 IMT when measured using SLT. In short, it can be roughly 

stated that the 4th advantage, which claims that proposed 

approach, at some extent, is not affected by identifier 

renaming, is prominent since WLL generates higher IMT in 

these cases.  

 

 

Fig. 9. The Inverse Number of Mismatched Token on Evaluation Cases 
about Identifier Renaming 

 

From cases about syntactic sugar replacement  

(EADV0501 to EADV0511), converting a while loop to either 

for or do-while loop is occurred on all cases. Such finding is 

natural since it is the most obvious replacement that can be 

conducted on given code. In some cases, such conversion is 

often featured with either changing increment form (e.g. a++; 

to a=a+1) or variable renaming to obfuscate plagiarized code 

further. It is important to note that, despite the fact that 

variable renaming is not a syntactic-sugar-replacement attack, 

the plagiarists argue that such attack is needed to smooth up 

the relevancy between involved variable name with newly-

introduced loop on their plagiarized code.  

IMT result for both WLL and SLT toward cases about 

syntactic sugar replacement can be seen in Fig. 10. WLL 

generates zero IMT in all cases since it, at some extent, 

converts syntactic sugars to their initial form and excludes 

some mismatched tokens through minimum matching 

similarity. Both mechanism might remove most possible 

mismatches from comparison. SLT, on the contrary, generates 

fluctuated IMT toward these cases  since it cannot handle 

syntactic-sugar replacement and variable renaming, as it is 

known that SLT compares token only based on its mnemonic 
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without considering other aspects such as token semantic or 

variable occurrence order. Among given cases, SLT generates 

the worst result on EADV0501 since such case combines loop 

conversion, iterator increment change, and variable renaming  

at once as its attack. Such combination generates numerous 

mismatched tokens, resulting -12 IMT when measured using 

SLT. In short, it can be roughly stated that the 5th advantage, 

which claims that proposed approach is not affected by 

semantically-similar syntactic sugar replacement, is 

prominent since WLL generates higher IMT than SLT in some 

cases. 

 

 

Fig. 10. The Inverse Number of Mismatched Token on Evaluation Cases 

about Syntactic Sugar Replacement 

 

From cases about encapsulating source code fragments  

(EADV0601 to EADV0611), all plagiarism attacks are about 

encapsulating statements as methods where the only variation 

is about the encapsulation scope. It starts with the largest 

scope, the whole main-method statements, to the narrowest 

one, a single statement.  

IMT result for both WLL and SLT toward cases about 

encapsulating source code fragments can be seen in Fig. 11. 

WLL generates higher IMT than SLT on half cases thanks to 

method linearization and argument removal heuristic. When 

combined, both mechanisms, at some extent, could replace 

each method invocation with its respective method content 

without leaving argument-preparation tokens. As a result, it 

could match method invocation with its method content, 

resolving issues caused by plagiarism attacks about inlining 

and outlining method. Nevertheless, on the other half cases, 

WLL generates lower or similar IMT to SLT. When observed 

further, such phenomenon is caused by twofold: 1) WLL’s  

argument removal heuristic does not always yield accurate 

result, especially for handling argument that uses additional 

operation. Therefore, it could generate lower IMT for WLL 

and, sometimes, such IMT underperforms SLT’s IMT; and 2) 

SLT could detect similar pattern from any location of given 

source codes since it ignores token context during comparison. 

Tokens from main method will be matched with tokens from 

encapsulating method even though both of them has no direct  

relation. Consequently, it could generate higher IMT for SLT, 

and, sometimes, such IMT outperforms WLL’s IMT. In short, 

it can be roughly stated that the 6th advantage, which claims 

that proposed approach handles inlining and outlining method, 

is prominent since WLL generates higher IMT than SLT in 

half cases. 

From cases about dummy methods (EADV0701 to 

EADV0711), we found that dummy methods can be roughly 

classified into twofold: relevant and irrelevant dummy 

method. Relevant dummy method refers to uninvoked method 

that has similar context with main program. For instance, 

uninvoked method about power of two that is found on 

calculator program. Irrelevant dummy method, on the 

contrary, refers to uninvoked method that has different context 

with main program. For instance, uninvoked method about 

calculating box volume that is found on calculator program. 

We would argue that the first category is preferred to be 

conducted on real plagiarism task since it will be less obvious 

to be accused as a plagiarism case. The plagiarists could argue 

that they misread the problem instruction and assumes that 

such methods are needed.  

 

 

Fig. 11. The Inverse Number of Mismatched Token on Evaluation Cases 
about Encapsulating Source Code Fragments 

 

IMT result for both WLL and SLT toward cases about 

dummy methods can be seen in Fig. 12. WLL generates higher 

IMT than SLT in most cases since it ignores dummy methods 

from comparison. WLL determines similarity based on 

comparing methods with the most similar signature. 

Therefore, since dummy methods are only found on 

plagiarized code, they will have no pair on original code, 

resulting no impact toward WLL’s IMT. SLT, on the contrary, 

might be slightly affected by dummy methods even though it 

applies RK-GST algorithm which could detect similar sub-

sequence regardless of its position. When observed further, 

SLT could generate -1 IMT on these cases since, on 

plagiarized code, most dummy methods have the copy of main 

method’s  statements as their content and main method is not 

placed as the first method. Both modification might confuse 

RK-GST algorithm when applied together since such 

algorithm compares tokens from upper-left to bottom-right 

sequentially regardless of their context. Some tokens from 

main method in original code might be considered as a match 

with tokens from dummy method in plagiarized code, 

resulting mismatches for tokens from main method in 

plagiarized code. In short, it can be roughly stated that the 7th 

advantage, which claims that proposed approach ignores 

dummy methods, is prominent since WLL generates higher 

IMT than SLT in most cases and WLL is not affected by 

method order change. 

From cases about dummy global variables (EADV0801 to 

EADV0811), we found that dummy global variables can be 

roughly classified into twofold: primitive and non-primitive 

dummy global variable. Primitive dummy global variable 

refers to unused global variable with built-in type (e.g. int and 

float) whereas non-primitive global variable refers to unused 
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global variable with reference type (e.g. String and Scanner). 

However, regardless of its form, both kinds of variable will 

only affect IMT based on the number of incorporated variable, 

as it is known that both approaches do not consider variable 

type in their comparison metric. 

 

 

Fig. 12. The Inverse Number of Mismatched Token on Evaluation Cases 
about Dummy Methods 

 

Both WLL and SLT still generates zero IMT in all cases 

about dummy global variables since they exclude such 

variables when determining similarity result. WLL excludes 

such variables before comparison since it only compares 

method content whereas SLT excludes such variables during 

comparison thanks to minimum matching similarity. Despite 

similar IMT result for both approaches, we would argue that 

the 8th advantage, which claims that proposed approach 

ignores dummy global variables, is prominent since WLL 

excludes such variables before comparison, resulting fewer 

tokens to be compared than SLT. 

To sum up, according to our empirical dataset, it can be 

stated that the advantages of Karnalim’s approach [11] are 

prominent in our approach since WLL outperforms SLT either 

explicitly or implicitly on given cases. On the one hand, it 

outperforms SLT explicitly by generating higher IMT in five 

advantages, which are the 3rd to 7th advantages. On the other 

hand, it outperforms SLT implicitly by providing indirect 

impact, such as automatic mechanism or fewer compared 

tokens, on remaining three advantages, which are the 1st, 2nd, 

and 8th advantage.  

B. Evaluating the 9 th Advantage: The Sensitiveness of 

Control Flow Change 

In order to evaluate the 9th advantage, which is about 

enhancing the sensitiveness of proposed approach toward 

control flow change, two scenarios are proposed which are 

WLL and ULL. WLL refers to our proposed approach while 

ULL refers to WLL without flow-based token weighting. The 

9th advantage is proved to be prominent iff WLL generates 

similar IMT with ULL. Such rule is applied based on the fact 

that original and plagiarized code for each case share similar 

semantic and flow-based token weighting should not be 

affected by plagiarism attacks that do not change program 

semantic. 

From cases about control flow change (EADV0901 to 

EADV0911), we found that all instruction-scope-based 

attacks are about relocating variable declaration from local 

(i.e. method variable) to global scope. According to our 

informal survey, the lecturer assistants argue that such 

modification is the only instruction-scope-based attack that, at 

some extent, does not change program semantic.  

IMT result for both WLL and ULL toward cases about 

instruction scope modification can be seen in Fig. 13. Both 

WLL and ULL generate similar IMT result on all cases. This 

finding is natural since incorporated attacks are only about 

moving local to global variables and, according to WLL 

assumption, such mechanism will not change token weight.  

 

 

Fig. 13. The Inverse Number of Mismatched Token on Evaluation Cases 
about Instruction Scope Modification 

 

It is important to note that both WLL and ULL do not 

generate zero IMT on cases about instruction scope 

modification since, on these cases, the structure of existing  

methods is also modified as a part of plagiarism attack. The 

lecturer assistants argue that such modification is necessary to 

make the plagiarized code less obvious. They state that global 

variables, which are generated as a result of instruction scope 

modification, should be accessed by accessing it directly and 

such variables should not be passed as method parameter nor 

return value.  

To sum up, since WLL generates similar IMT with ULL, 

it can be roughly stated that the 9th advantage, which claims 

that proposed approach is sensitive to control flow change, is 

prominent. 

C. Evaluating the 10 th Advantage: Enhancing the 

Effectiveness of Method Linearization by Removing 

Argument-Preparation Tokens 

In order to evaluate the 10th advantage, which is about 

enhancing the effectiveness of method linearization by 

removing argument-preparation tokens, two scenarios are 

proposed which are WLL and WLL-ARG. WLL refers to our 

proposed approach while WLL-ARG refers to WLL without 

argument removal heuristic. The 10th advantage is proved to 

be prominent iff total compared tokens on WLL is fewer than 

total compared tokens on WLL-ARG. Such rule is applied 

with an assumption that the existence of argument removal 

heuristic is able to remove argument-preparation tokens, 

resulting fewer compared tokens on cases about encapsulating 

instructions as a method with numerous parameters. 

From cases about encapsulating instructions as a method 

with numerous parameters  (EADV1001 to EADV1011), 

incorporated parameters in given plagiarism attacks can be 

roughly classified into twofold: instruction-related and 

dummy parameter. On the one hand, instruction-related 

parameter refers to a parameter that is used as a part of 

operation in encapsulated instructions. Such parameter usually 

modifies several instructions so that they can be easily 
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integrated to given parameter. On the other hand, dummy 

parameter refers to a parameter that is completely unused in 

encapsulated instructions. It is only used to obfuscate given 

plagiarism attack and has no effect on program semantic. 

However, regardless of its type, both parameter types will be 

handled in similar fashion with our argument removal 

heuristic. All tokens for preparing arguments  resulted from 

such parameters will be removed as long as  no additional 

operation is involved. 

The number of compared tokens for both WLL and WLL-

ARG toward cases about encapsulating instructions as a 

method with numerous parameters can be seen in Fig. 14. On 

all cases, WLL generates fewer compared tokens than WLL-

ARG. Such finding is  natural since each case have at least one 

argument-preparation token and most of such token will be 

removed by argument removal heuristic. As seen in Fig. 14, 

delta value of compared tokens between both scenarios varies 

per case. It starts with 1 as its lowest delta value to 14 as its 

highest delta value. On the one hand, the lowest delta value, 

which is 1, is generated from EADV1001, EADV1002, 

EADV1005, and EADV1011. Argument removal heuristic 

only excludes one token on such cases since these cases only 

use either one instruction-related or dummy parameter on its 

encapsulating method. On the other, the highest delta value, 

which is 14, is generated from EADV1008. Argument 

removal heuristic excludes 14 tokens on given case since it 

uses 14 instruction-related parameters on its encapsulating 

method. Such parameters are used to store the subsequences 

of desired output, which will be concatenated on 

encapsulating method to generate desired output. 

 

 

Fig. 14. The Number of Compared Tokens on Cases about Encapsulating 
Instructions as a Method with Numerous Parameters 

 

To sum up, according to our result, it can be roughly stated 

that the 10th advantage, which claims that proposed approach, 

at some extent, enhances the effectiveness of method 

linearization by removing argument-preparation tokens, is 

prominent since the number of compared tokens on WLL is 

fewer than the number of compared tokens on WLL-ARG in 

all cases.  

D. Evaluating the 11 th Advantage: Enhancing the Efficiency 

of Similarity Measurement by Removing the Content of 

All Invoked Methods Before Comparison 

In order to evaluate the 11th advantage, which is about 

enhancing the efficiency of similarity measurement by 

removing the content of all invoked methods before 

comparison, two scenarios are proposed which are WLL and 

WLL-IMR. WLL refers to our proposed approach while 

WLL-IMR refers to WLL without invoked method removal. 

The 11th advantage is proved to be prominent iff total 

compared methods on WLL is fewer than total invoked 

methods on WLL-IMR. Such rule is applied with an 

assumption that the existence of invoked method removal is 

able to remove invoked methods form comparison, resulting 

fewer compared methods on cases about encapsulating source 

code fragments. 

From cases about encapsulating source code fragments 

(EADV0601 to EADV0611), the number of invoked methods 

varies per case. It is ranged from 2 to 8 methods with 4.454 

methods per case in average. Our invoked method removal is 

expected to effectively remove all invoked methods listed on 

both original and plagiarized source code regardless of its 

number. 

The number of compared methods for both WLL and 

WLL-IMR toward cases about encapsulating source code 

fragments can be seen in Fig. 15. WLL involves four 

compared methods per case regardless of its number of initial 

methods while WLL-IMR involves numerous compared 

methods regarding to its number of initial methods. On the one 

hand, WLL involves only four compared methods regardless 

of its number of initial methods since, on these cases, most 

methods have been invoked on main method, resulting only 

four non-invoked methods for comparison. These methods are 

originated from both original and plagiarized source code 

where each code contributes two method: main method and 

implicit constructor. It is important to note that the latter 

method is automatically generated by Java compiler. Thus, it 

will always be found on each similarity measurement. 

However, since its length is considerably short, we would 

argue that the existence of such method is not significant and 

we could ignore it for our current work. On the other hand, 

WLL-IMR involves numerous compared methods regarding 

to its number of initial methods since it considers all initial 

methods when determining similarity degree, resulting more 

processes to be conducted.  

 

 

Fig. 15. The Number of Compared Methods on Cases about Encapsulating 
Source Code Fragments 

 

To sum up, according to our result, it can be roughly stated 

that the 11th advantage, which claims that proposed approach 

enhances the efficiency of similarity measurement by 

removing the content of all invoked methods before 

comparison, is prominent since the number of compared 

methods on WLL is fewer than the number of compared 

methods on WLL-IMR in all cases. 
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VI. TIME EFFICIENCY EVALUATION 

This section aims to measure time efficiency of our 

proposed approach (WLL) when compared to Karnalim’s  

approach (KAA) and state-of-the-art approach (SLT). Such 

efficiency will be measured by comparing processing time 

between involved approaches toward raw dataset that has been 

used by Karnalim [11] to enlist popular plagiarism attacks on 

Introductory Programming. It consists of 378 plagiarism pairs 

which were collected from 9 lecturer assistants and mapped to 

6 categories based on Faidhi & Robinson’s plagiarism levels 

[18]. However, since processing source codes on such dataset 

is considerably fast due to their short number of token; and 

empirical processing time is inaccurate to capture short 

execution time, we use Approximate Estimated Time (AET), 

which is inspired from Rabbani & Karnalim’s work [4], as our 

time efficiency metric. Such metric determines time efficiency  

based on the number of involved processes instead of 

empirical processing time, resulting accurate result even for 

capturing short execution time. 

AET for WLL, KAA, and SLT can be seen on (4), (5), and 

(6) respectively. Firstly, AET for WLL is defined as the total 

AET for three phases: compilation, extraction, and 

comparison phase. First, compilation phase takes N0+M0 

processes where N0 and M0 represent the number of source 

code tokens from compiled source codes. Second, extraction 

phase takes  (N2 + 9N) + (M2 + 9M) where N and M represent 

the number of low-level tokens from extracted executable 

files. Each executable file takes (T2 + 9T) for each T tokens 

where its details can be seen in Table VII. Each phase is 

featured with its respective assumption which indirectly 

determines its generated AET based on the worst case. Last, 

comparison phase, which relies on RK-GST, takes max(N,M)3 

processes. Such AET is generated based on RK-GST worst 

case time complexity. Secondly, AET for KAA is defined in 

similar manner as in WLL except that it excludes flow-based 

token weighting, argument removal heuristic, and invoked 

method removal from extraction phase. Finally, AET for SLT 

is defined in similar manner as in WLL except that it excludes 

all low-level extraction processes and replaces N & M with N0 

& M0 at comparison phase. Such modifications are applied 

based on the fact that SLT detects similarity based on source 

code tokens instead of the low-level ones.  

 

AETW LL(M,N) =(max(N,M))3+N2+M2+9N+9M+N0+M0  (4) 

 

AETULL(M,N) =(max(N,M))3+N2+M2+4N+4M+N0+M0    (5) 

AETSST(M,N) =(max(N0,M0))3+N0+M0                   (6) 

 

Averaged AET result toward plagiarism-level-focused 

evaluation dataset can be seen in Fig. 16. Vertical axis  

represents averaged AET value for each approach per 

plagiarism level whereas horizontal axis represents Faidhi & 

Robinson’s plagiarism levels [18]. In general, it can be stated 

that WLL is moderately efficient in terms of its processing 

time since it generates extremely fewer processes than SLT 

and slightly more processes than KAA for each plagiarism 

level. On the one hand, it generates extremely fewer processes 

than SLT since low-level tokens are far more concise than 

source code tokens. For most program statements, the number 

of low-level tokens required to represent such statement is 

usually fewer than the number of source code tokens required 

to represent similar statement. Such phenomenon reduces the 

number of compared tokens on WLL, resulting fewer number 

of processes when compared to SLT, even though AET for 

WLL is more complex than AET for SLT in terms of time 

complexity. On the other hand, it generates slightly more 

processes than KAA since both approaches accept similar 

number of tokens per case and AET for WLL is slightly more 

complex than AET for KAA in terms of time complexity. It 

takes 5N + 5M processes more where N and M are the length 

of compared token sequences. 

 

 

Fig. 16. Averaged Approximate Estimated T ime per Plagiarism Level 
 

To sum up, there are two findings that can be deducted 

which are: 1) Our approach is extremely more efficient than 

state-of-the-art approach due to the compactness of token 

representation in low-level form; and 2) Our approach is 

slightly less efficient than Karnalim’s approach due to the 

existence of flow-based token weighting, argument 

 
TABLE VII 

AET  FOR EACH EXTRACTION PHASE IN WLL 

Extraction Phase AET Assumption 

Method Content Extraction T  - 

Flow-based Token Weighting 3T  2T processes for detecting loops using Tarjan’s algorithm by assuming each graph has T nodes and T edges. 
T processes for assigning flow-based token weight. 

Recursive-Method Invocation 
Elimination 

3T  2T processes for detecting recursive methods using Tarjan’s algorithm by assuming each graph has T nodes 
and T edges. 
T processes for eliminating recursive methods by assuming the worst case: each method contains one token 
and all of them are recursive methods. 

Method Linearization T
2
 + T  T

2
 processes for linearizing methods by assuming the worst case: each method consists of one token and all 

of them are required to be linearized. 
T processes for argument removal heuristic by assuming the worst case: each existing token on method body 
should be removed. 

Invoked Method Removal T  Assuming the worst case of invoked method removal: all methods are invoked where each method consists 
of one token. 
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removal heuristic, and invoked method removal.  

VII. QUALITATIVE EVALUATION 

This evaluation aims to qualitatively measure the 

effectiveness of our advantages in practice. We want to 

revalidate whether our advantages are useful in practical 

environment or not. In order to do that, we conduct a survey 

toward 11 lecturer assistants from Programming courses about 

our advantages. We assume that the feedbacks of these 

assistants could represent plagiarism phenomena in practical 

environment since they should have had numerous experience 

in terms of detecting source code plagiarism. 

A. Survey Questions 

Since we assume that each respondent is  accustomed to 

detect plagiarism attack due to their experience, we do not ask 

directly whether the advantages of our approach are effective 

or not. Instead, we convert each advantage to a plagiarism 

attack that favors given advantage and ask them the 

characteristics of that attack in practical environment. We 

believe that such conversion could provide more objective 

result since the respondents could understand the impact of 

such advantages based on example. Plagiarism attack that will 

be used to represent each advantage is taken from attack 

mapping that has been used to generate advantage-focused 

empirical evaluation dataset. It can be seen on Table VI. In 

addition to providing plagiarism attacks that favor given 

advantages, we also provide sample cases which show the 

impact of given attacks. The sample case for each attack per 

advantage can be seen on Table VIII. Advantage ID is 

referenced based on ID convention generated on Table VI 

whereas each sample case is referenced from advantage-

focused controlled evaluation dataset. Since ADV6 and 

ADV11 share similar attack, both advantages will be 

represented as one plagiarism attack at once, resulting only 10 

plagiarism attacks displayed to the respondents.  

 
TABLE VIII 

T HE ADVANTAGES OF PROPOSED APPROACH WITH THEIR PLAGIARISM 

ATTACK AND SAMPLE CASE 

Advantage 

ID 

Plagiarism Attack Sample 

Case 
ADV1 Modify source code indentation EKAR11 

ADV2 Modify source code comments EKAR24 

ADV3 Modify source code delimiters EKAR34 

ADV4 Modify source code identifier names EKAR46 

ADV5 Replace syntactic sugar with other 

semantically-similar form 

EKAR52 

ADV6 Encapsulate source code fragments EKAR63 

ADV7 Add dummy methods EKAR73 

ADV8 Add dummy global variables  EKAR83 

ADV9 Modify instruction scope EFLA76 

ADV10 Encapsulate instructions as a method 
with numerous parameters 

EARG14 

ADV11 Encapsulate source code fragments EKAR63 

 

For each attack, the respondents are required to measure 

its semantic similarity, obfuscation, and occurrence degree 

according to their experience as programming assistants. For 

clarity, these degrees will be converted to three research 

questions which are: 

a) R1: How similar the semantics between original and 

plagiarized code if such attack is performed?  

b) R2: How obfuscated the plagiarized code if such 

attack is performed? 

c) R3: How frequent is the occurrence of such attack 

among student’s works? 

First of all, R1 aims to collect assistant’s perspective 

toward semantic similarity. It aims to check whether similarity  

in our approach matches human-defined semantic similarity  

or not. Secondly, R2 aims to measure the impact of plagiaris m 

attacks toward human evaluators. It aims to evaluate whether 

such attacks could be easily recognized by humans or not. 

Finally, R3 aims to approximately measure the occurrence of 

given plagiarism attacks. It aims to check how frequent the 

given attacks are occurred in student’s works. These three 

research questions will be answered in 5-points scale where 

each point represents an approximate proportion. 1 refers to 

less than 20%; 2 refers to greater than 20% and less  or equal 

to 40%; 3 refers to greater than 40% and less or equal to 60%; 

4 refers to greater than 60% and less or equal to 80%; and 5 

refers to greater than 80% and less or equal to 100%. For each 

given answer, the respondents are required to provide their 

own rationale, which will be used for our further analysis. 

Each advantage will be considered as a prominent 

advantage in practical environment if its generated attack gets 

maximum score on all research questions by all respondents. 

High score on those aspects means that such attack does not 

change program semantic, generates perfect obfuscation for 

human evaluator, and occurs frequently on student’s work. In 

short, such attack is required to be detected by a plagiarism 

detection system. Therefore, since such attack favors our 

advantage, it can be stated that our advantage is prominent on 

practical environment. 

B. Respondents 

Our respondents consist of 11 undergraduate students who 

were assigned as lecturer assistants in Programming courses. 

The statistics of such respondents can be seen in Table IX. 

There are two findings which can be deducted from given 

statistic. On the one hand, among these respondents, there are 

two well-experienced assistants who have assisted numerous 

Programming courses. Consequently, standard deviation in 

the first two rows on given table are considerably high. On the 

other hand, in terms of Grade Average Point (GPA), all 

respondents have GPA higher than 3.5. Each of them is  

considered either as a first-class or second-class honored 

student. Thus, it can be stated that only smart lecturer 

assistants with high academic merit are selected for this 

evaluation. We expect such selection could provide more 

objective result since they could perform in-depth analysis 

while answering the questionnaire. 

C. Responses for R1: How similar the semantics between 

original and plagiarized code if such attack is performed? 

The average semantic similarity degree for each attack per 

advantage can be seen on Fig. 17. Vertical axis represents 

average degree for each attack whereas horizontal axis  

represents plagiarism attacks that are represented with its 

respective advantage. It is interesting to see that none of the 

cases yield average value higher or equal to 3. In other words, 

all cases are roughly considered to have semantic similarity  

lower than 40%. When observed further, most respondents 
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were confused with the differences between syntactic and 

semantic similarity. They tended to consider every 

modification as a semantic modification. Thus, they provided 

low score for all cases. We would argue that such finding is 

natural for our respondents since they had no experience in 

compiler techniques. Among these respondents, only two of 

them have some experiences on compiler techniques. They 

provided high score in most cases. However, the impact of 

such scores is insignificant when compared to majority scores 

since each case still yields low average score.   

   
TABLE IX 

RESPONDENT STATISTICS 

Variable Min Max Average Standard 
Deviation 

The number of course session 
which has been assisted 

1 30 6.818 8.155 

The distinct number of 
Programming course session 
which has been assisted 

1 5 2.909 1.239 

Grade Point Average (GPA) 3.6 3.96 3.826 0.131 

 

 

Fig. 17. Average Semantic Similarity Degree 
 

One of the extreme examples regarding to respondent 

confusion about syntactic and semantic similarity is ADV1 

case. It yields the lowest score when compared to other cases 

even though it involves no semantic modification. It only 

changes source code indentation which will be discarded at 

compilation phase. According to the respondent’s rationales, 

they admitted that they had considered such modification as a 

semantic change. ADV9 case, which gains the highest score, 

is also affected by such confusion. It gets considerably high 

score since its modification is insignificant on syntactic level. 

In order to get accurate perspectives about semantic 

similarity of given attacks, we reconduct such survey on 

similar respondents. The procedure of such survey is quite 

similar with our initial survey except that the definition of 

semantic similarity is given comprehensively to respondents 

before they fill up the survey. The average semantic similarity 

degree for each attack per advantage can be seen on Fig. 18. 

Vertical axis represents average degree for each attack 

whereas horizontal axis represents plagiarism attacks that are 

represented with its respective advantage. According to given 

results, ADV1, which was scored with the lowest similarity  

value on the initial survey, is scored with the highest similarity  

value (4.09 of 5) on our second survey. Such significant 

change is natural since, in post-survey, the respondents have 

understood the definition of semantic similarity. They will 

only provide low similarity score on source code pairs which 

modification affects the program flow, such as ADV10. 

ADV10 gains the lowest score in post-survey since the 

respondents argued that additional parameters  resulted from 

given case affect the program flow quite significantly when 

compared to other cases.  

 

 

Fig. 18. Average Semantic Similarity Degree Resulted from The Second 
Survey 

D. Responses for R2: How obfuscated the plagiarized code 

if such attack is performed? 

The average obfuscation degree for each attack per 

advantage can be seen on Fig. 19. Vertical axis represents 

average degree for each attack whereas horizontal axis  

represents plagiarism attacks that are represented with its 

respective advantage. None of involved cases yield average 

result higher or equal to 3. In other words, all cases have 

obfuscation degree lower than 40%. Therefore, it can be stated 

that, according to our respondents, plagiarism attacks involved 

in these cases are not obfuscated enough. They could still be 

detected through manual observation by the respondents. 

However, it is important to note that such result is generated 

based on our respondents who are limited to students with high 

academic merit. We would argue that resulted obfuscation 

degrees might be higher if ordinary lecturer assistants were 

involved. 

 

 

Fig. 19. Average Obfuscation Degree 

 

Among these cases, ADV3 case yields the lowest score, 

which is 1, since all respondents think that modifying  

delimiter is an obvious attack. It only slightly intensifies the 

obfuscation degree while its existence could make the human 

examiner becomes more suspicious about given code. No 

programmers intentionally put extra delimiters while solving 

the problem. Normally, they will focus on source code 

semantic instead. ADV6 & ADV11 case, on the contrary, 

yields the highest score since, according to our respondents, 

encapsulating source code fragments is the most advanced 
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attack in our evaluated cases. It, at some extent, could change 

source code layout significantly and can only be done by smart 

students due to its complexity. 

E. Responses for R3: How frequent is the occurrence of such 

attack among student’s works?  

In fact, this evaluation would become more 

comprehensive if its findings were deducted empirically from 

student’s programming works, that could be extracted from 

various programming classes in previous semesters. However, 

since we do not record such data in our university, we alter our 

evaluation mechanism to approximately measure it through 

lecturer assistant’s memory and experience about such 

occurrences. 

The average occurrence degree for each attack per 

advantage can be seen on Fig. 20. Vertical axis represents 

average degree for each attack whereas horizontal axis  

represents plagiarism attacks that are represented with its 

respective advantage. In general, most cases are quite seldom 

occurred since their score is lower than 3, which means that 

their occurrences are less than 40%. Among these cases, 

ADV4 case is the only case which does not follow such trend. 

It generates 4.091 average score, which means that its 

occurrence is higher than 80%. According to respondent’s 

rationales, they stated that identifier renaming, which is found 

on ADV4 case, is popular among students since it is easy to 

be conducted and less obvious to be suspected as a plagiarism 

act. As we know, identifier names are purely determined based 

on human natural language knowledge. Thus, it is harder to 

claim such modification as a plagiarism attack. The students 

could easily avoid the accusation by claiming that they 

thought these names by themselves while creating the code. 

Even though ADV1, ADV2, and ADV3 case are easier to be 

conducted, these cases still generate lower obfuscation degree 

than ADV4 since they are too obvious. They could make the 

human examiner becomes more suspicious about given code.  

 

 

Fig. 20. Average Occurrence Degree 

F. Generalized Result 

According to respondent’s feedbacks, several findings can 

be deducted which are: 

a) Plagiarism attacks regarding to our advantages 

generate low similarity degree when the respondents 

consider both syntactic and semantic aspect. They 

will assume every source code modification as a 

differentiating factor. Such finding is deducted from 

initial survey result about R1 where all cases are 

scored lower than 3 in our scale. 

b) Plagiarism attacks regarding to our advantages 

generate high semantic similarity degree since, 

according to our respondents, these attacks do not 

significantly change program behavior. Such finding 

is deducted from second-survey result about R1 

where all cases are scored higher than 3 in our scale. 

c) Plagiarism attacks regarding to our advantages can 

be detected by our respondents easily since, 

according to our respondents, such attacks have low 

obfuscation degree. Such finding is deducted from 

the survey result about R2 where all cases are scored 

lower than 3 in our scale. We would argue that such 

low results are supported by the fact that our 

respondents are smart students who have high 

academic merit. The resulted obfuscation degrees  

might be higher if ordinary lecturer assistants were 

involved. 

d) Most plagiarism attacks regarding to our advantages 

are seldom occurred since they are either too 

complex to be conducted or too obvious to be 

suspected as a plagiarism attack. Identifier renaming, 

which is handled by our fourth advantage (ADV4), 

is the only case which does not follow such trend. 

According to our respondent’s experience, more than 

80% plagiarized code pairs contain such attack. 

These findings are deducted from the survey result  

about R3 where most cases are scored lower than 3 

and only ADV4 case is scored higher than 3. 

When perceived based on our approach’s advantages, it 

can be stated that the advantages of our approach target 

plagiarism attacks that do not significantly change program 

semantic, generate moderate obfuscation, and generate 

moderate occurrences on student’s works. Thus, we would 

argue that our approach is moderately effective to handle 

plagiarism attacks in practical environment. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, a low-level structure-based approach for 

detecting source code plagiarism is proposed. It is extended 

from Karnalim’s work [11] by incorporating flow-based token 

weighting, argument removal heuristic, and invoked method 

removal. Flow-based token weighting is intended to reduce 

the number of false-positive results; argument removal 

heuristic is intended to generate more-accurate linearized  

method content; and invoked method removal is intended to 

fasten processing time. According to our evaluation schemes, 

three findings can be deducted regarding to our proposed 

approach. Firstly, the advantages provided by our proposed 

approach are prominent in both controlled and empirical 

environment. Secondly, in general, our proposed approach 

outperforms Karnalim’s and state-of-the-art approach in terms 

of time efficiency. Finally, our approach is moderately 

effective to handle plagiarism attacks in practical 

environment. 

For further research, our work will be expanded to handle 

source code plagiarism in object-oriented environment. As we 

know, most programming tasks nowadays are written in 

object-oriented fashion and handling object-oriented code is 

an inevitable task. One of such expansion has been published 

on [53]. It proposes a naïve approach to linearize abstract 

method. In addition of such future work, we also intend to 
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combine attribute-based approach with our approach. Such 

combination is expected to generate more-accurate plagiarism 

detection.  
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