


TABLE OF CONTENTS 

KN: Keynote Speech 

KN.1  Innovation Through Principles 
Shengdong Zhao 
pp. i 

 

KN.2 Process Model Discovery for Process Aware Information Systems 
Riyanarto Sarno 
pp. iii-x 

T1: Distributed System, Computer Network and Architecture, Network 
Security, Infrastructure Systems and Services, Ubiquitous System and 
Infrastructure, Digital Forensic, High Performance Computing, Parallel 
Programming, Information Security 

T1.1  Digital Forensic Analysis of Telegram Messenger on Android Devices 
Gandeva Bayu Satrya, Philip T. Daely and Muhammad Arief Nugroho 
pp. 1-7 
 

T1.2  Sales Forecasting Using Holt-Winters in Enterprise Resource Planning At 
Sales and Distribution Module 
Vicky Sugiarto, Riyanarto Sarno and Dwi Sunaryono 
pp. 8-13 
 

T1.3  Determining Bonus in Enterprise Resource Planning At Human Resource 
Management Module Using Key Performance Indicator 
Dwi Suseno, Riyanarto Sarno and Dwi Sunaryono 
pp. 14-19 
 

T1.4  Account Charting and Financial Reporting At Accounting Module on 
Enterprise Resource Planning Using Tree Traversal Algorithm 
Riyanarto Sarno, Ashari Adhitama and Sarwosri 
pp. 20-25 
 

T1.5  Dynamics Simulation Model of Demand and Supply Electricity Energy Public 
Facilities and Social Sector Case Study East Java 
Ardhya Putra, Riyanarto Sarno and Erma Suryani 
pp. 26-33 
 

T1.6  HTTP Communication Latency Via Cellular Network for Intelligent 
Transportation System Applications 
Michael Ardita, Suwadi Suwadi, Achmad Affandi and E Endroyono 
pp. 34-38 
 
 
 



T1.7 Clustering of SSH Brute-Force Attack Logs Using k-Clique Percolation 
Hudan Studiawan, Baskoro Adi Pratomo and Radityo Anggoro 
pp. 39-42 

T2: Human-Computer Interaction, Multimedia Application 

T2.1  Design and Implementation of Virtual Indonesian Musical Instrument (VIMi) 
Application Using Leap Motion Controller 
Ridho Rahman Hariadi and Imam Kuswardayan 
pp. 43-48 
 

T2.2  Augmented Reality Application for Cockroach Phobia Therapy Using 
Everyday Objects as Marker Substitute 
Fiandra Fatharany, Ridho Rahman Hariadi, Darlis Herumurti and Anny 
Yuniarti 
pp. 49-52 
 

T2.3  Implementation of Face Detection and Recognition of Indonesian Language in 
Communication Between Humans and Robots 
Muhtadin and Surya Sumpeno 
pp. 53-57 
 

T2.4  Resize My Image: A Mobile App for Interactive Image Resizing Using Multi 
Operator and Interactive Genetic Algorithm 
Anny Yuniarti, Stefanus Anggara and Bilqis Amaliah 
pp. 58-62 

T3: Pattern Recognition, Intelligent Systems, Knowledge Data Discovery, 
Bioinformatics/Biomedical Apps, Content-Based Multimedia Retrieval, Remote 
Sensing, Image Processing, Big Data, Information Retrieval, Robotic, Modelling 
Simulation, Applied Computing 

T3.1  Detecting Source Code Plagiarism on Introductory Programming Course 
Assignments Using a Bytecode Approach 
Oscar Karnalim 
pp. 63-68 
 

T3.2  Computer-Aided Screening for Acute Leukemia blood infection using gray-
level intensity 
Hatungimana Gervais and Darlis Herumurti 
pp. 69-74 
 

T3.3  Integration GLCM and Geometric Feature Extraction of Region of Interest for 
Classifying Tuna 
Wanvy Arifha Saputra and Darlis Herumurti 
pp. 75-79 
 
 
 



T3.14  Reduce Noise in The Binary Image Using Non Linear Spatial Filtering of  
Mode 
Teady Matius Surya Mulyana 
pp. 135-139 
 

T3.15  Heart Murmurs Extraction Using the Complete Ensemble Empirical Mode 
Decomposition and the Pearson Distance Metric 
Jusak Jusak, Ira Puspasari and Pauladie Susanto 
pp. 140-145 
 

T3.16  Development of Early Detection of Complication Organ Kidney Disease 
Caused by Diabetes Mellitus Based on Color Constancy 
Agus Prayitno, Adhi Wibawa and Mauridhi Purnomo 
pp. 146-149 
 

T3.17  Digital Color Classification for Colorful Cross Stitch Threads Using 
RGB+Euclidean Distance and LAB+CIE94 
David Setiabudi, Sani M. Isa and Bambang Heru Iswanto 
pp. 150-156 
 

T3.18  Application Development for Recognizing Type of Infant's Cry Sound 
Welly Limantoro, Chastine Fatichah and Umi Laili Yuhana 
pp. 157-161 
 

T3.19  Opinion Classification Using Maximum Entropy and K-Means Clustering 
Amir Hamzah and Naniek Widyastuti 
pp. 162-166 
 

T3.20  Enriching English Into Sundanese and Javanese Translation List Using Pivot 
Language 
Arie Suryani, Isye Arieshanti, Banu Yohanes, Muhammad Subair, Sari Dewi 
Budiwati and Bagus Rintyarna 
pp. 167-171 
 

T3.21  Mixed Vapour Identification Using Partition Column-QCMs and Artificial 
Neural Network 
Eva Agustin, Muhammad Rivai and Achmad Arifin 
pp. 172-177 
 

T3.22  BencanaVis Visualization and Clustering of Disaster Readiness Using K 
Means with R Shiny A Case Study for Disaster, Medical Personnel and Health 
Facilities Data at Province Level in Indonesia 
Renny Kusumawardani, Irmasari Hafidz and Septa Putra 
pp. 178-186 
 

T3.23  Dynamics Simulation of Air Passenger Forecasting and Passenger Terminal 
Capacity Expansion Scenario in Yogyakarta Airport 
Bilqis Amaliah, Azizha Zeinita and Erma Suryani 
pp. 187-192 



T3.4  Face Recognition Based on Extended Symmetric Local Graph Structure 
Andhik Yunanto and Darlis Herumurti 
pp. 80-84 
 

T3.5  Classification of EEG Signals Using Common Spatial Pattern-Principle 
Component Analysis and Interval Type-2 Fuzzy Logic System 
William Yaputra Budiman, Handayani Tjandrasa and Dini Navastara 
pp. 85-89 
 

T3.6  Job-Shop Scheduling Model for Optimization of the Double Track Railway 
Scheduling (Case Study: Solo-Yogyakarta Railway Network) 
Sarngadi Palgunadi, Dian Supraba and Bambang Harjito 
pp. 90-95 
 

T3.7  Koi Fish Classification based on HSV Color Space 
Dhian Kartika and Darlis Herumurti 
pp. 96-100 
 

T3.8 Adaptive Image Compression Using Adaptive Huffman and LZW 
Djuned F Djusdek, Hudan Studiawan and Tohari Ahmad 
pp. 101-106 
 

T3.9  Indonesia Scholarship Selection Framework Using Fuzzy Inferences System 
Approach. Case Study: "Bidik Misi" Scholarship Selection 
Luther Latumakulita, Fajar Purnama, Tsuyoshi Usagawa, Sary Paturusi and 
Delta Prima 
pp. 107-113 
 

T3.10  Using Google Trend Data in Forecasting Number of Dengue Fever Cases with 
ARIMAX Method Case Study: Surabaya, Indonesia 
Wiwik Anggraeni and Laras Aristiani 
pp. 114-118 
 

T3.11  Maximum Entropy Principle for Exudates Segmentation in Retinal Fundus 
Images 
Igi Ardiyanto, Ratna Lestari Budiani Buana and Hanung Adi Nugroho 
pp. 119-123 
 

T3.12  Pressure Control of A Wheeled Wall Climbing Robot Using Proportional 
Controller 
Novia Andriani, Yunafi'atul Aniroh, Muhammad Maulida and Miftahul Alfafa 
pp. 124-128 
 

T3.13  The Electric Wheelchair Control Using Electromyography Sensor Of Arm 
Muscle 
Rudi Hardiansyah, Yunafi'atul Aniroh, Arista Ainurrohmah and Farida 
Tyastuti 
pp. 129-134 
 



T3.24  Feature Extraction Using Statistical Moments of Wavelet Transform for Iris 
Recognition 
Nanik Suciati, Afdhal Anugrah, Chastine Fatichah, Handayani Tjandrasa, 
Agus Arifin, Diana Purwitasari and Dini Navastara 
pp. 193-198 
 

T3.25  Generalized Regression Neural Network for Predicting Traffic Flow 
Joko Buliali, Victor Hariadi, Ahmad Saikhu and Saprina Mamase 
pp. 199-202 

T4: Software Engineering, Formal Methods, E-Learning, Enterprise 
Information System, Risk Management, Geographic Information System 

T4.1  The Development of Method of The Enhancement of Technical Factor (TF) 
and Environmental Factor (EF) to The Use Case Point (UCP) to Calculate The 
Estimation of Software's Effort 
Sarwosri, Muhammad Jabir Al Haiyan, Aditya Putra Ferza and Mujahid 
Husein 
pp. 203-207 
 

T4.2  Substation Placement Optimization Method Using Delaunay Triangulation 
Algorithm and Voronoi Diagram In East Java Case Study 
Pradipta Ghusti, Riyanarto Sarno and RV Hari Ginardi 
pp. 208-213 
 

T4.3  Visual GUI Testing in Continuous Integration Environment 
Fachrul Pralienka Bani Muhamad, Riyanarto Sarno, Adhatus Solichah 
Ahmadiyah and Siti Rochimah 
pp. 214-219 
 

T4.4  A Study of Students' Satisfaction Toward Blended Learning Implementation 
in Higher Education Institution in Indonesia 
Sary Paturusi, Arie Lumenta and Tsuyoshi Usagawa 
pp. 220-225 
 

T4.5  Sugarcane Variety Identification Using Dynamic Weighted Directed Acyclic 
Graph Similarity 
Adi Heru Utomo, Riyanarto Sarno and RV Hari Ginardi 
pp. 226-230 
 

T4.6  Business Process Model Similarity Analysis Using Hybrid PLSA and WDAG 
Methods 
Indra Gita Anugrah and Riyanarto Sarno 
pp. 231-236 
 

T4.7  Optimization Solar Farm Site Selection Using Multi-Criteria Decision Making 
Fuzzy AHP and PROMETHEE: Case Study in Bali 
Kadek Aldrin Wiguna, Riyanarto Sarno and Nurul Fajrin Ariyani 
pp. 237-243 
 



T4.8  Student Perceptions of Virtual Programming Lab on E-Learning Class at 
University of Sam Ratulangi 
Sumenge Tangkawarouw Godion Kaunang, Tsuyoshi Usagawa, Sary Paturusi, 
Alwin Sambul, Glanny Mangindaan and Brave Sugiarso 
pp. 244-248 
 

T4.9  Fraud Detection on Event Logs of Goods and Services Procurement Business 
Process Using Heuristics Miner Algorithm 
Dewi Rahmawati, Muhammad Ainul Yaqin and Riyanarto Sarno 
pp. 249-254 
 

T4.10  The Development of Quality Gates Instrument for e-Learning Implementation 
Feby Artwodini Muqtadiroh, Hanim Maria Astuti and Rian Triadi 
pp. 255-261 
 

T4.11  Designing a Gamification for Monitoring Surabaya City Development 
Nur Rakhmawati and Bagus Fibrianto 
pp. 262-265 
 

T4.12  Poverty Classification Using Analytic Hierarchy Process and K-Means 
Clustering 
Sarwosri, Dwi Sunaryono, Rizky Januar Akbar and Risky Setiyawan 
pp. 266-269 

 
T4.13  Development of an Online System to Manage Hajj Pilgrims in Saudi Arabia 

Gofran Sami and Wajdi Alhakami 
pp. 270-276 

 
	



 
 
 

Detecting Source Code Plagiarism on Introductory 
Programming Course Assignments Using a Bytecode 

Approach 

Oscar Karnalim 
Faculty of Information Technology 

Maranatha Christian University 
Bandung, Indonesia 

oscar.karnalim@gmail.com 
 
 

Abstract—Even though there are various source code 
plagiarism detection approaches, most of them only concern with 
low-level plagiarism attack with an assumption that plagiarism is 
only conducted by students who are not proficient in 
programming. However, plagiarism is often conducted not only 
due to student incapability, but also because of bad time 
management. Thus, high-level plagiarism attack should be 
detected and evaluated. This paper proposes source code 
plagiarism detection approach which can detect most 
introductory-programming-course plagiarism attacks at any 
level by utilizing low-level instructions instead of source code 
tokens. Several mechanisms are also introduced to improve its 
effectiveness such as instruction generalization, instruction 
reinterpretation, method-based comparison, and method 
linearization. Since low-level instruction is a language-dependent 
feature, Java is selected as target programming language with 
bytecode as its low-level instruction. Based on evaluation, it can 
be concluded that our approach is more effective to detect most 
plagiarism attack types than raw source code approach on 
introductory programming course. This evaluation is based on 
plagiarism attack types that are collected through controlled 
experiment.   

Keywords—source code plagiarism; source code similarity; low-
level language; bytecode; plagiarism attack types 

I. INTRODUCTION 

Source code plagiarism is a major issue which emerges in 
Programming course [1]. Using modern technology, Students 
can easily obtain their colleague’s coursework, modify it, and 
then submit it as their own. In order to give more objective 
result to students, plagiarism should be detected and the 
plagiarist should be punished. However, detecting plagiarism 
by hand is quite time-consuming. Programming assignments 
are usually given every week and each of them consists of at 
least a dozen of source codes [2]. To overcome this problem, 
several automatic methods for detecting source code 
plagiarism are developed. 

When detecting plagiarism in source codes, language-
specific features are often needed, especially to detect 
advanced plagiarism attack (e.g. method inlining and syntactic 
sugar modifications). Most plagiarism detections utilize lexer 

(and parser) for each programming language in order to 
exploit language-specific features such as tokens, code 
patterns, and syntactic sugar translations [2, 3]. Yet, this 
approach requires more maintenance effort since lexer and 
parser provided should be up to date with their respective 
programming language. Moreover, as most programming 
languages evolve to make programmer more comfortable, 
more syntactic sugars may be added in future release which 
yield frequent change in lexer and parser. 

On the other hand, several other approaches rely on low-
level instruction which is generated as a result of compiling 
the source code [4, 5]. This method is more beneficial than 
source code approaches since its structure is less frequently 
changed. Low-level structure is intended for machine, so that 
syntactic sugar is not required and all source-code syntactic 
sugars are automatically translated. Additionally, low-level 
instruction only considers semantic-preserving instructions 
(without source-code template and delimiter) which may yield 
more precise similarity. Based on these reason, this paper 
introduces a pairwise low-level-based source code plagiarism 
detection which is focused on Java introductory programming 
course. Our approach extends Ji et al proposed method [4] 
with several distinctive features. Beside proposed plagiarism 
detection approach, this paper also enlists several possible 
plagiarism attack types in Java introductory programming 
which then will be classified based on Faidhi and Robinson’s 
plagiarism classification [6]. 

II. RELATED WORKS 

Most source code plagiarism detections are intended to be 
developed as language-independent. This kind of approach 
generalizes all programming languages and treat them as raw 
text with an assumption that the most-distinctive plagiarism 
features are not language-dependent. One of this approach is 
proposed by Brixtel et al which detect plagiarism by utilizing 
multiple level plagiarism recognition from character level to 
corpus level [7]. However, most-distinctive plagiarism 
features are often found in programming paradigm and 
syntactic sugars which may not be detected through language-
independent approach.  

2016 International Conference on Information, Communication Technology and System (ICTS)

978-1-5090-1381-4/16/$31.00 ©2016 IEEE 63



 
 
 

Due to that reason, language-specific features are still 
utilized for detecting source code plagiarism in various 
degrees.  Some of them try as much as possible to keep their 
approaches as language-independent by enabling developer to 
incorporate new programming language through several 
preprocessing phases. These kind of approaches are 
commonly used in major plagiarism detection methods such as 
attribute-counting [6], token matching [2, 3], classification [8, 
9, 10], latent semantic analysis [11], and clustering [12] 
method.  In spite of its benefit which enable developer to 
incorporate new programming language, preprocessing phases 
required by these approaches may not be easy to implement, 
especially when target language has different and unique 
patterns. Additionally, language-specific features utilized in 
these approaches are also limited due to its language-
independent behavior. 

In order to utilize more language-specific features, several 
approaches exploit more sophisticated representation such as 
abstract syntax tree [13, 14, 15, 16], control flow graph [17], 
and program dependence graph [18]. These approaches are 
tightly-coupled with their target programming language which 
means that it requires considerable effort when applied to 
other programming language. However, these approaches tend 
to yield more precise result than other approaches due to its 
language-specific manner.  

On the other hand, several different and unique approaches 
are also developed by utilizing low-level instruction instead of 
source code [19, 20]. Anjali et al exploits execution trace of 
Java bytecodes to detect plagiarism with an assumption that 
similarity can be measured through dynamic behavior [19]. 
This approach is not practical since both bytecodes should be 
executed which is not efficient in terms of time, especially on 
NP-complexity bytecodes. Moreover, in programming course 
assignment, most programs always have similar dynamic 
behavior due to assignment restriction. Cuomo et al exploits 
Java bytecodes for detecting plagiarism by applying formal 
method to determine bytecode similarity [20]. Yet, applying 
formal method may yield time-efficiency drawback which is 
not suitable for detecting a dozens of plagiarism cases. 

Since string matching algorithm is quite effective and 
efficient for detecting source code plagiarism, several 
researches treat low-level instructions as token sequences and 
compare them using string matching algorithm [5, 6]. Juričić 
utilizes Levensthein distance on instruction mnemonics in 
order to measure similarity of two Common Intermediate 
Language (CIL) sequences. Nevertheless, this approach may 
yield faulty result since mnemonic name and functionality are 
not always related and similar functionality does not always 
entail similar mnemonic name. Ji et al propose bytecode-based 
Java plagiarism detection by generalizing bytecode instruction 
and compare its sequences using adaptive local alignment. 
They also implement main-method linearization in order to 
handle method-based plagiarism attack. 

In this paper, we extend Ji et al proposed method [5] in 
order to detect source code plagiarism in introductory 
programming course. We have several distinctive features 

which are expected to yield more precise result. First, 
instructions are generalized not only by functionality but also 
data type re-categorization. Second, special instructions are 
reinterpreted as regular instructions (e.g. switch-case and jsr 
are converted to goto). Third, string literals and goto 
information are involved in our plagiarism detection. Forth, 
method-based comparison proposed in this paper is not only 
relying on main method but also all methods since not all 
programming assignments rely on main method. Finally, our 
method linearization handles recursive method.  

III. PLAGIARISM ATTACKS 

Since plagiarism detection can be developed more 
precisely if most possible plagiarism attacks are known and 
listed, we propose controlled experiment for collecting 
plagiarism attacks. In controlled experiment, we enlist 
possible plagiarism attacks based on 378 plagiarized source 
codes generated by respondents. To collect more varied  
plagiarism attacks, respondents are limited to students who are 
proficient at programming from various classes. Additionally, 
most of them are lecturer assistants who are experienced in 
detecting student coursework plagiarism. The statistic of our 
respondents is shown in Table I. Though they are small in 
number, they may yield more varied plagiarism attacks than 
numerous average students due to their experiences. Each 
respondent is asked to plagiarize seven source codes from 
Liang’s textbook [21] which cover introductory programming 
course materials. Then, each source code should be 
plagiarized based on six plagiarism levels defined by Faidhi 
and Robinson [6]. Since there are nine respondents who 
plagiarize seven source codes to six plagiarized source codes 
each, this experiment yields 378 plagiarized source codes (9 
respondents * 7 source codes * 6 plagiarism levels).  

TABLE I.  STUDENT RESPONDENT STATISTICS 

Class Number of 
Respondents 

Status 

2011 1 Former lecturer assistant 

2012 2 Former lecturer assistants 

2013 4 Current lecturer assistants 

2015 2 - 

 

Beside plagiarism attack types that are extracted from 
controlled experiment, several augmented attack types are also 
added which is resulted from our experience as Java 
programming lecturer. Both types are listed in Table II where 
augmented types are marked with blue color and all attack 
types can be occurred in reverse order. L2.5 is a new level 
defined besides Faidhi and Robinson’s plagiarism level and 
located between L2 and L3. This level is focused in modifying 
minor supplementary features (e.g. package system in Java). 
In our perspective, this level is easier than L3 and more 
difficult than L2.  

 

 

64



 
 
 

TABLE II.  PLAGIARISM ATTACK TYPES 

ID Level Attack Type 

0001 L0 Verbatim copy 

1001 

L1 

Modify comments and whitespaces 

1002 Modify source code delimiter except arithmetic bracket 

1003 Modify the usage of bracket in arithmetic operation 

2001 L2 Modify identifier name 

2501 

L2.5 

Change the package name and structure  

2502 Change package import 

2503 
Avoid explicit class import by using full class name on 
each respective class declaration  

3001 

L3 

Declare all variables at the beginning of source code 

3002 Assign variable declarations with its default values 

3003 Merge two or more variable declarations 

3004 Merge variable declaration and assignment 

3005 Change local to global variable 

3006 Reuse declared variables for other processes 

3007 Incorporate dummy variables 

3008 Rearrange method declaration 

3009 Change access modifier in attributes and methods 

4001 

L4 

Encapsulate the content of main method as particular 
method and call it on main method as a replacement of 
its content 

4002 
Encapsulate particular task as a void method with the 
use of global variables (no parameter involved) 

4003 
Encapsulate particular task as a void method without the 
use of global variables (parameters are involved) 

4004 Replace particular task with a non-void method 

4005 Incorporate dummy methods 

5001 

L5 

Utilize API-based instruction instead of regular 
instruction 

5002 
Break down API-based instruction to several more-
specific API-based instructions 

5003 
Exchange API-based instruction with other API-based 
instruction that yield similar functionality for particular 
circumstance  

5004 Incorporate useless parameters on API method calls 

5005 Replace constant value with variable 

5006 
Replace constant with arithmetic operation which yield 
similar result 

5007 Change operand order in complex arithmetic operation  

5008 
Merge several arithmetic operations without the use of 
temporary variables 

5009 
Locate increment/decrement instruction as index or 
method parameters directly instead of treating them as 
single instruction 

5010 
Replace increment/decrement instruction with their 
respective binary operator form 

5011 
Replace combined assignment with their respective 
binary operator form 

5012 
Replace primitive data type with other primitive data 
type that yield similar functionality for particular 
circumstance 

5013 
Replace reference data type with other reference data 
type that yield similar functionality for particular 
circumstance  

5014 Incorporate useless casting 

ID Level Attack Type 

5015 

 

Replace if-else branching with switch-case 

5016 Change loop type  

5017 
Change array/collection iteration from regular traversal 
to for-each traversal 

6001 

L6 

Replace a number of repetitive instructions with loop 

6002 Change loop boundary 

6003 Reverse loop direction from ascending to descending 

6004 Convert loop to void recursive method 

6005 Convert loop to non-void recursive method 

6006 
Rearrange branching statements based on its condition 
validation sequence 

6007 
Replace logical expression with other expression that 
yield similar meaning 

6008 
Incorporate logical expression that can be replaced with 
boolean constant 

6009 
Incorporate dummy instructions except logical 
expression 

6010 
Incorporate useless assignment in parameter or return of 
a non-boolean method 

6011 Rearrange loosely-coupled instructions 

IV. METHODOLOGY 

Our source-code-comparison approach consists of four 
steps: 1) select pairwise method candidates; 2) generalize and 
reinterpret method instructions; 3) linearize method content; 4) 
measure code similarity.  

A. Select Pairwise Method Candidates 

This step takes two project directories as its input and 
compile all source codes to class files. Project directories is 
utilized as input since most programming courses rely on 
sophisticated IDE (e.g. Netbeans and Eclipse). However, since 
most IDEs store compilation results (classes) on their project 
directories, compiling is only conducted when a project has no 
class file. Furthermore, raw token comparison is also applied 
instead of bytecode comparison if either one or both of the 
compared projects is uncompilable. 

After compilation, all methods are extracted from each 
class in both projects and compared. Comparison is performed 
by comparing methods instead of the whole classes due to 
RKGST complexity, O(n3). Comparing two classes with 5 
instructions in 2 methods (with 2 and 3 method instructions 
respectively) in method perspective is faster than the whole 
class (23 + 32 < 53). Although our approach relies on method 
comparison, comparing all method in pairs may be inefficient 
due to its O(mn) complexity. However, with an assumption 
that most programming assignments have identifier name 
patterns defined by their lecturer, the number of pairwise 
method comparison can be reduced by only comparing 
methods which have similar identifier name. Utilizing this 
mechanism may reduce comparison complexity to min(O(m) 
,O(n)). Furthermore, an equitable balance of pair distribution 
is also involved so that each method is only compared once 
and each pair selected has the most similar identifier name 
among all possible pairs. This pair distribution mechanism 
does not only reduce time complexity but also handles 

65



 
 
 

plagiarism attack which is based on dummy methods and 
attributes. 

The algorithm for selecting pairwise method candidates 
takes two method arrays as its input and return selected 
method pairs as its result. First, all method are compared in 
pair and sorted based on pair similarity in ascending order. 
Pair similarity is determined with Levensthein distance 
between both method identifier names wherein method 
identifier name refers to the concatenation of full class name, 
method name, and method descriptor. Thus, after all pairs are 
sorted, each pair which member(s) is occurred in more-similar 
pair is removed.  

B. Generalize and Reinterpret Method Instructions 

Each method content in selected method pairs is extracted 
with Javassist [22] and most instructions are either generalized 
or reinterpreted. Generalization is conducted since most 
bytecode instructions are over-specific. Several instructions 
may yield similar purpose and only differ in technical 
implementation (e.g. goto and goto_w). Generalization rules 
can be seen in Fig. 1 which is grouped based on their similar 
functionality with respect to data type re-categorization. Data 
type re-categorization split data types into two general 
categories (primitive and reference type) instead of real data 
types since data type change is often utilized in plagiarism 
attack. Furthermore, other opcodes which value is not listed in 
Fig. 1 are not translated and taken as raw instructions. On the 
other hand, reinterpretation converts special instructions to 
regular instructions so that plagiarism attack can be handled 
more precisely. jsr, jsr_w,and ret are reinterpreted as goto 
sequence which mechanism is adopted from [23]. tableswitch 
and lookupswitch are also reinterpreted as goto sequence but 
its mechanism is adopted from [24]. putstatic and putfield are 
converted to primitive_store/reference_store whereas getstatic 
and getfield are converted to primitive_load/reference_load. 
Both conversions are based on its data types. 

 

Fig. 1. Mnemonic Generalization Rules 

Furthermore, since load_constant_pool, goto, and 
conditional_goto are frequently occured in bytecodes, they are 
concatenated with their respective parameters in order to 
distinguish them with each other. load_constant_pool is 
concatenated with its string literal due to the fact that string 
plays important role in program. Moreover, to ignore slight 
modification in string literal, concatenated string is converted 
to lowercase with its non-alphanumeric characters removed. 

On the other hand, goto and conditional_goto are concatenated 
with their jump distance so that two instructions with different 
jump target are not considered similar. 

C. Linearize Method Content 

After all methods in selected pairs are translated to 
instruction sequences, each method is linearized to handle L4 
plagiarism attack. Linearization is adopted from [24] which 
implement dynamic programming mechanism. However, our 
approach is quite different with [24] since we remove 
recursive method calls on recursive methods instead of 
limiting recursive method linearization.  

D. Measure Code Similarity 

Similarity in this paper extends YAP [25] equation with 
respect to number of method instructions, as in (1). sim(A,B) 
measures similarity of two projects which result is ranged 
from 0 to 1 inclusively (0 represents not match at all whereas 
1 represents exact match). Pairs represents selected method 
pairs resulted from the first step wherein each pair (p) consists 
of one A method member (Pa) and one B method member 
(Pb). s(Pa,Pb) is measured using rabin-karp greedy string 
algorithm (RKGST) [26] with 2 as its minimum match length 
(MML) whereas length(X) represents the number of 
instructions in X. Utilizing this equation may also handle 
dummy instructions since the similarity of each method pair is 
based on method with fewer instructions instead of both 
methods. Thus, dummy instruction attached to plagiarized 
project may not affect similarity result. For example, even 
though project B (1 method with 28 instructions) is plagiarized 
from project A (1 method with 23 instructions) by 
incorporating 5 dummy instructions, its similarity still yield 1 
(23/23)  since it is divided by the number of instructions in A 
(23). 

sim(A,B) =
∑ �(��,��)� ∈ �����

∑ ���(������(��),������(��))� ∈ �����
             (1) 

V. EVALUATION 

Evaluation is conducted by comparing our approach (B) 
with 2 source-code-based approaches which are raw token 
comparison (RT) and method-based raw token comparison 
(MRT). RT and MRT only differ in token extraction where RT 
takes all tokens avalaible and MRT only takes token sequence 
from method contents. In both approaches, source codes are 
translated to token sequences where each token is represented 
by its respective token type instead of its value. Translation is 
conducted using ANTLR [27] whereas token type is defined 
based on Java 8 grammar provided by [28]. Both source-code-
based approaches adopt similar pairwise candidate selection 
and similarity measurement that is utilized in B. Yet, MRT 
utilizes method-source-code token sequences instead of 
bytecode instructions and RT extends MRT by utilizing class 
pairs instead of method pairs. 

In terms of token size, all approaches yield different token 
size which detail can be seen in Fig. 2. Horizontal axis 
represents 100 projects from evaluation dataset (50 cases * 2 
for each case) whereas vertical axis represents token size of 

66



 
 
 

each project. RT yields the largest token size since all tokens 
are included whereas MRT yield less token size than RT since 
MRT does not incorporate template tokens (e.g. class header). 
B yield the least token size since B only consider semantic-
preserving tokens by removing both source-code template and 
delimiter tokens. As a result of only considering semantic-
preserving tokens, B tends to yield more-precise result due to 
its semantic-orientation and faster comparison time due to its 
limited tokens. 

 

Fig. 2. Token Size Comparison 

However, since token size varies for each approach, 
effectiveness cannot be evaluated by comparing similarity 
result which is represented as percentage. Therefore, we 
propose evaluation mechanism that is based on how many 
mismatched token toward the number of compared tokens. A 
plagiarism detection approach is considered as resistible to a 
particular plagiarism attack iff the number of mismatched 
token between target source code and plagiarized source code 
is lower or equal with MML defined in RKGST. This scheme 
is based on two assumptions which are: 1) each plagiarism 
case in evaluation data only contains one kind of attack; 2) 
token sequences with size smaller than MML are not detected 
as plagiarism in RKGST.  

The number of mismatched tokens for each evaluation 
case can be seen in Fig. 3 where horizontal axis represents 50 
cases from evaluation dataset and vertical axis represents the 
number of mismatched tokens. As seen in Fig. 3, RT and MRT 
results are incosistent due to non-semantic-preserving tokens. 
Even though MRT has more precise result due the absence of 
template tokens, MRT is still affected by source code delimiter 
tokens. Furthermore, since MRT is not featured with method 

linearization, MRT yields worse result than RT when detecting 
L4 plagiarism attack. Uncompared methods in MRT is 
automatically compared in RT since method is the  member of 
class file by default. On the other hand, since B yields the 
lowest number of mismatched token among other approaches 
in most cases, it can be concluded that B is the most resistible 
approach to handle plagiarism attacks. L0-L3 are handled at 
tokenizing phase in compiler translation whereas L4 is 
handled by method linearization. Thus, most L5 attacks which 
are based on syntactic sugar are automatically translated at 
bytecode level so that it can be detected easily. For high-level 
plagiarism attacks (half of L5 attack and L6 attack), bytecodes 
is supposed to be ineffective due to the fact that bytecodes is a 
technical detailed representation of source code. Small 
semantic-related change in source code may yield great impact 
on bytecode structure. However, this impediment can be 
handled through bytecode generalization and reinterpretation 
so that only significant information are extracted and all 
similar instructions are treated as one instruction.  

However, several outlier cases arise where B has 3 or more 
mismatched tokens (case 5003, 5015, 6001, 6003, and 6005). 
Case 5003 replaces system.out.print with system.out.printf  for 
printing two strings. Even though it only differs in method 
name at source code level, it affects greatly at bytecode level 
since parameter type of both method are different. 
system.out.print requires one regular argument whereas 
system.out.printf requires variable length argument which is 
converted as array in bytecode representation. Case 5003 is an 
example where bytecode level are less beneficial than source-
code level. In case 5015, B yields high number of mismatched 
tokens since switch-case reinterpretation is not exactly similar 
to if-else statement due to their different behavior and 
capability. Not all if-else branching can be converted to 
switch-case and vice versa. However, switch-case 
reinterpretation yields more similar structure than comparing it 
as raw instruction (B result is still higher than RT and MRT). 
On the other hand, case 6001, 6003, and 6005 are quite 
difficult to detect due to their significant logic change. These 
cases yield big difference in both source-code and bytecode 
level. 

 

 

Fig. 3. Mismatched Token Comparison

67



 

VI. CONCLUSION 

Based on evaluation, our proposed bytecode-based 
approach is more resistible than raw-token-source-code 
approach to handle plagiarism attacks (see Fig. 3). Several 
outlier cases may occur but our approach still yield more 
compromising result than raw-token-source-code approach. 
Our proposed approach consists of 4 steps where each step has 
a particular plagiarism detection mechanism: Pairwise method 
candidate selection handles dummy methods and attributes by 
selecting only similar method pairs based on their identifier; 
Instruction generalization and reinterpretation handles data 
types, syntactic sugars, and bytecode specificity; Method 
linearization handles method-based plagiarism attack with the 
concern of recursive methods; Code similarity handles dummy 
instructions. Furthermore, since bytecode is the result of 
compiling source code, most low-level plagiarism attacks (L0-
L3) are unavailing since whitespaces and comments are 
automatically removed and all identifiers are renamed.   

VII. FUTURE WORK 

In next research, our proposed method will be expanded to 
handle plagiarism attacks in object-oriented programming. 
Several advanced programming features are added into our 
consideration such as exception, inheritance, interface, and 
polymorphism. Moreover, we will also propose enviroment 
setting which enable our approach to be implemented in 
programming course. 

REFERENCES 
[1]  G. Cosma and M. Joy, "Towards a Definition of Source-Code 

Plagiarism," IEEE Transactions on Education, vol. 51, no. 2, pp. 195 - 
200, 2008.  

[2]  C. Kustanto and I. Liem, "Automatic Source Code Plagiarism 
Detection," in SNPD '09. 10th ACIS International Conference on 
Software Engineering, Artificial Intelligences, Networking and 
Parallel/Distributed Computing, Daegu, 2009.  

[3]  L. Prechelt, G. Malpohl and M. Philippsen, "Finding plagiarism among 
a set of programs with JPLag," Journal of Universal Computer Science, 
vol. 8, no. 11, pp. 1016-1038, 2002.  

[4]  J.-H. Ji, G. Woo and H.-G. Cho, "A Plagiarism Detection Technique for 
Java Program Using Bytecode Analysis," in ICCIT '08. Third 
International Conference on Convergence and Hybrid Information 
Technology, Busan, 2008.  

[5]  V. Juričić, "Detecting source code similarity using low-level 
languages," in 33rd International Conference on Information 
Technology Interfaces, Dubrovnik, 2011.  

[6]  J. A. W. Faidhi and S. K. Robinson, "An Empirical approach for 
detecting program similarity and plagiarism within a university 
programming environment," Computer & Education, vol. 11, no. 1, pp. 
11-19, 1987.  

[7]  R. Brixtel, M. Fontaine, B. Lesner and C. Bazin, "Language-
independent clone detection applied to plagiarism detection," in 10th 
IEEE Working Conference on Source Code Analysis and Manipulation, 
Timisoara, 2010.  

[8]  U. Bandara and G. Wijayarathna, "A machine learning based tool for 
source code plagiarism detection," International Journal of Machine 
Learning and Computing, vol. 1, no. 4, 2011.  

[9]  S. Engels, V. Lakshmanan and M. Craig, "Plagiarism detection using 
feature-based neural networks," in The 38th SIGCSE technical 
symposium on Computer science education, New York, 2007.  

[10]  R. C. Lange and S. Mancoridis, "Using code metric histograms and 
genetic algorithms to perform author identification for software 
forensics," in The 9th annual conference on Genetic and evolutionary 

computation, New York, 2007.  

[11]  G. Cosma and M. Joy, "Evaluating the performance of LSA for source-
code plagiarism detection," Informatica, vol. 36, pp. 409-424, 2012.  

[12]  A. Jadalla and A. Elnagar, "PDE4Java: Plagiarism Detection Engine for 
Java source code: a clustering approach," International Journal of 
Business Intelligence and Data Mining, vol. 3, no. 2, 2008.  

[13]  M. Chilowicz, É. Duris and G. Roussel, "Finding Similarities in Source 
Code Through Factorization," in 8th Workshop on Language 
Descriptions, Tools and Applications, 2008.  

[14]  M. Chilowicz, E. Duris and G. Roussel, "Syntax tree fingerprinting for 
source code similarity detection," in IEEE 17th International 
Conference on Program Comprehension, Vancouver, 2009.  

[15]  D. Poongodi and A. G. Tholkkappia, "Multi-Agent based Sequence 
Algorithm for Detecting Plagiarism and Clones in Java Source Code 
using Abstract Syntax Tree," International Journal of Computer 
Applications, vol. 90, 2014.  

[16]  T. Sager, A. Bernstein, M. Pinzger and C. Kiefer, "Detecting similar 
Java classes using tree algorithms," in The 2006 international workshop 
on Mining software repositories, New York, 2006.  

[17]  D.-K. Chae, J. Ha, S.-W. Kim, B. Kang and E. G. Im, "Software 
plagiarism detection: a graph-based approach," in The 22nd ACM 
international conference on Information & Knowledge Management, 
New York, 2013.  

[18]  J. Krinke, "Identifying similar code with program dependence graphs," 
in Eighth Working Conference on Reverse Engineering, Stuttgart, 2001. 

[19]  V. Anjali, T. R. Swapna and B. Jayaraman, "Plagiarism Detection for 
Java Programs without Source Codes," in The International Conference 
on Information and Communication Technologies, Kochi, 2014.  

[20]  A. Cuomo, A. Santone and U. Vilano, "A novel approach based on 
formal methods for clone detection," in The 6th International Workshop 
on Software Clones, 2012.  

[21]  Y. D. Liang, Introduction to Java Programming Comprehensive 
Version Ninth Edition, Prentice Hall, 2013.  

[22]  S. Chiba, "Load-Time Structural Reflection in Java," in 14th European 
Conference Sophia Antipolis and Cannes, France, 2000.  

[23]  H. Park, S. Choi, H.-i. Lim and T. Han, "Detecting Code Theft via a 
Static Instruction Trace Birthmark for Java Methods," in International 
Conference on Industrial Informatics, Daejeon, 2008.  

[24]  O. Karnalim and R. Mandala, "Java Archives Search Engine Using 
Byte Code as Information Source," in International Conference on 
Data and Software Engineering (ICODSE), Bandung, 2014.  

[25]  M. J. Wise, "Detection of similarities in student programs: YAP'ing 
may be preferable to plague'ing," in Proceedings of the twenty-third 
SIGCSE technical symposium on Computer science education, New 
York, 1992.  

[26]  M. J. Wise, "Running rabin-karp matching and greedy string tiling," 
Basser Departement of Computer Science, Sydney University, 1993. 

[27]  T. Parr, "ANTLR," 2014. [Online]. Available: http://www.antlr.org/. 
[Accessed 07 12 2015]. 

[28]  "grammars-v4/java8 at master · antlr/grammars-v4 · GitHub," 2016. 
[Online]. Available: https://github.com/antlr/grammars-
v4/tree/master/java8. [Accessed 07 12 2015]. 

 

68



ICTS 2016 Conference Schedule 

Wednesday, October 12th, 2016 

 

Time Agenda 

08.00 - 09.00 Registration 

09.00 - 09.05 Conference Statement by Conference Chair (Ridho Rahman 

Hariadi, M.Sc) 

09.05 - 09.20 Opening Ceremony by Rector (Prof. Joni Hermana) 

09.20 - 10.20 Keynote Speech 1: Prof. Shengdong Zhao 

10.20 - 10.35 Coffee Break 

10.35 - 11.35 Keynote Speech 2: Prof. Riyanarto Sarno 

11.35 - 13.00 Lunch 

13.00 - 15.00 Parallel Sessions 

15.00 - 15.05 Conference Summary and Closing Ceremony  

 


