

APIEMS 2014

Abstracts

The 15th Asia Pacific Industrial Engineering and Management Systems Conference

> October 12~15, 2014
> Ramada Plaza Jeju Hotel, Jeju, Korea

Organized by Korean Institute of Industrial Engineers

Message from the APIEMS President

Greeting and a warm welcome to the participants of the 15th Asia Pacific Industrial Engineering and Management Systems Conference. Started in 1998, APIEMS has grown to become the premier conference for industrial engineering and management systems in the region with participants from all around the world. The main theme of this year conference: "Sustainable Industrial Systems and Big Data Management", is an attempt to address the balance among economic and technical development, social development, and environmental protection in this fast changing world.

I congratulate and thank Prof. Dr. Chi-Hyuck Jun, the conference chair, whose leadership made this APIEMS 2014 conference possible. We are also grateful for the enthusiastic support of APIEMS from the KIIE and the Korea research community.

On behave of the Asia Pacific Industrial Engineering and Management Society, I wish you a successful conference with many thoughtful discussions and debates with old and new friends.

OT. Kor

Professor Voratas Kachitvichyanukul APIEMS President, (2013-2014) Professor of Industrial & Manufacturing Engineering Dean, School of Engineering and Technology Asian Institute of Technology, THAILAND

Message from the General Chair

Welcome to APIEMS 2014 in Jeju City, a beautiful island located at the most south of Korea. It is our great pleasure to organize this conference, which is supported by Korean Institute of Industrial Engineers (KIIE). APIEMS conferences have rapidly emerged as an important forum for exchange of ideas and information about latest developments in the field of industrial engineering and management systems among professionals mostly from Asia-Pacific countries. APIEMS 2014 conference encourages contributors to address the topical theme: Sustainable Industrial Systems and Big Data Management. Papers will represent the latest academic thinking and successful case examples. The wider audience will benefit from the knowledge and experience of leading practitioners and academics in this area.

The conference seeks research contributions from researchers, educators, modelers, software developers, users and practitioners. We hope that you enjoy participating in APIEMS 2014 and staying in Jeju.

Chi h. Jum

Professor Chi-Hyuck Jun General Chair, APIEMS 2014 Industrial & Management Engineering POSTECH, Korea

Conference Committee Members

Conference Committee

• Conference Chair

• Chi-Hyuck Jun (POSTECH, Korea)

• Honorary Chairs

- Hark Hwang (KAIST, Korea)
- Mooyoung Jung (UNIST, Korea)
- Kap Hwan Kim (Pusan National Univ., Korea; President, KIIE)

• Conference Co-Chairs (International Advisory Board)

- Abdul Hakim Halim (InstitutTeknologi Bandung, Indonesia)
- Anthony Shun Fung Chiu (De La Salle University, Philippines)
- Baoding Liu (Tsinghua University, China)
- Bernard Jiang (National Taiwan University of Science and Technology, Taiwan)
- C. J. Liao (National Taiwan University of Science and Technology, Taiwan)
- Che-Fu Chien (National Tsing Hua University, Taiwan)
- Du-Ming Tsai (Yuan Ze University, Taiwan)
- ErhanKozan (Queensland University of Technology, Australia)
- HirokazuKono (Keio University, Japan)
- Jin Peng (Huanggang Normal University, China)
- Jinwoo, Park (Seoul National Univ., Korea)
- Katsuhiko Takahashi (Hiroshima University, Japan)
- Kazuyoshi Ishii (Kanazawa Institute of Technology, Japan)
- Kin Keung Lai (City University of Hong Kong, Hong Kong)
- Mao Jiun Wang (National Tsing Hua Univeristy, Taiwan)
- Min K. Chung (POSTECH, Korea)
- Mitsuo Gen (Fuzzy Logic Systems Institute, Japan)
- P. L. Chang (Feng Chia Uni)
- Shouyang Wan (Chinese Academy of Sciences, China)
- Tae Eog Lee (KAIST, Korea)
- Takashi Oyabu (Kanazawa Seiryo University, Japan)
- VoratasKachitvichyanukul (Asian Institute of Technology, Thailand)

- Yon-Chun Chou (National Taiwan University, Taiwan)
- Young Hae Lee (Hanyang University, Korea)
- ZahariTaha (Universiti Malaysia Pahang, Malaysia)

Organizing Committee

• Technical Program Chairs

- Il-Kyeong Moon (Seoul National Univ., Korea)
- Byung-In Kim (POSTECH, Korea)

• Publication Chairs

- Jaewook Lee (Seoul National Univ., Korea)
- Hosang Jung (Inha Univ., Korea)

• Publicity Chairs

- Chulung Lee (Korea Univ., Korea)
- Yoo-Suk Hong (Seoul National Univ., Korea)

• Sponsorship Chairs

- Minseok Song (UNIST, Korea)
- Young Jin Kim (Pukyong National Univ., Korea)

• Exhibition Chairs

- Hyunbo Cho (POSTECH, Korea)
- Yonghui Oh (Daejin Univ., Korea)

• Finance Chair

• Dong-Ho Lee (Hanyang Univ., Korea)

Award Chairs

- Kyung sik Lee (Seoul National Univ., Korea)
- Young Jae Jang (KAIST, Korea)

• Local Arrangement Chair

• Dong-Cheol Lee (Jeju National Univ., Korea)

Conference Sponsors

The Korean Federation of Science and Technology Societies

DOOSAN

SAS KOREA

Pohang University of Science and Technology

The Korean Operations Research and Management Science Society

THE KOREAN OPERATIONS RESEARH AND MANAGEMENT SCIENCE SOCIETY

Keynote Speech

Keynote Speech I Research Issues in Future Logistics

Oct 13 (Monday) 11:00-12:00

Room: Ramada-1

Chung–Yee Lee

Hong Kong University of Science and Technology, China

Dr. Chung-Yee Lee is Chair Professor/Cheong Ying Chan Professor of Engineering in the Department of Industrial Engineering & Logistics Management at Hong Kong University of Science and Technology. He served as Department Head for seven years (2001- 2008). He is also the Founding and Current Director of Logistics and Supply Chain Management Institute. He is a Fellow of the Institute of Industrial Engineers in U.S. and also a Fellow of Hong Kong Academy of Engineering Science. Before joining HKUST in 2001, he was Rockwell Chair Professor in the Department of Industrial Engineering at Texas A&M University. He worked as a plant manager and also had few years consulting experience in Taiwan. In the past thirty years he has engaged in more than forty research projects sponsored by NSF, RGC, ITF, IBM, Motorola, AT&T Paradyne, Harris Semicon ductor, Northern Telecom, Martin Marietta, Hong Kong Air Cargo Terminal, Hongkong International Terminal, Philips Medical, ...,etc.

His search areas are in logistics and supply chain management, scheduling and inventory management. He has published more than 130 papers in refereed journals. According to an article in Int. J. Prod. Eco. (2009), which looked at all papers published in the 20 core journals during last 50 years in the field of production and operations management, he was ranked No. 6 among all researchers worldwide in h-index.

He received a BS degree in Electronic Engineering (1972) and a MS degree in Management Sciences (1976) both from National Chiao-Tung University in Taiwan. He also received a MS degree in Industrial Engineering from Northwestern University (1980) and PhD degree in Operations Research from Yale University (1984).

Keynote Speech

Keynote Speech II Data-Driven Decision Making in Manufacturing: Lessons Learned and Future Opportunities

Oct 14 (Tuesday) 11:00-12:00

Room: Ramada-1

Ronald G. Askin

Arizona State University, USA

Ronald G. Askin, Ph.D., is a Professor of Industrial Engineering and Director of the School of Computing, Informatics, and Decision Systems Engineering at Arizona State University. Professor Askin received his B. S. in Industrial Engineering from Lehigh University followed by an M.S. in Operations Research and PhD in Industrial and Systems Engineering from the Georgia Institute of Technology. He has over 30 years of experience in the development, teaching and application of methods for systems design and analysis with particular emphasis on production and material flow systems. Other interests include quality engineering and decision analysis. He has published over 120 journal and conference proceedings papers in these areas.

Dr. Askin is a Fellow of the Institute of Industrial Engineers (IIE) and serves as Editor-in-Chief of IIE Transactions. He has served on the IIE Board of Trustees, as President of the IIE Council of Fellows, Chair of the Association of Chairs of Operations Research Departments (ACORD) Chair of the Industrial Engineering Academic Department Heads (CIEADH) and President of the INFORMS Manufacturing and Service Operations Management Society (MSOM). He was also General Chair of the 2012 INFORMS Annual Conference. His list of awards includes a National Science Foundation Presidential Young Investigator Award, the Shingo Prize for Excellence in Manufacturing Research, IIE Joint Publishers Book of the Year Award (twice), IIE Transactions on Design and Manufacturing Best Paper Award (twice), the Eugene L. Grant best paper award from The Engineering Economist, and the IIE Transactions Development and Applications Award.

Keynote Speech

Keynote Speech III Big Data Management

Oct 14 (Tuesday) 13:00-14:00

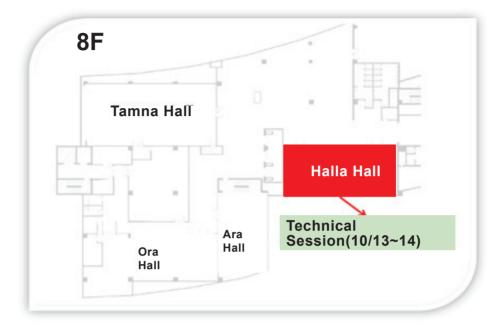
Room: Ramada-1

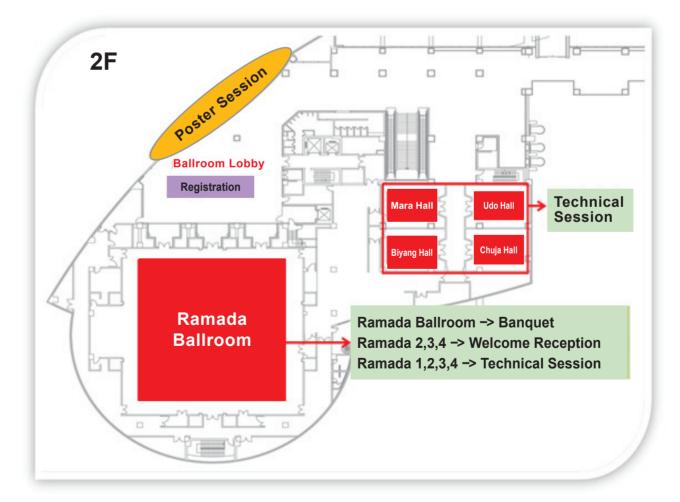
Sungzoon Cho

Seoul National University, Korea.

Sungzoon Cho is currently professor of Industrial Engineering Department, the director of Data Mining Center at Seoul National University (SNU) and a member of Government 3.0 Committee of Korean government. He is on the editorial board of International Journal of Operations Research and Information Systems and International Journal of Cognitive Biometrics. He served as the presi yundai Motors, Hyundai Heavy Industries, POSCO, Daewoo Shipbuilding and Marine Engineering, LG Electronics, Doosan Infracore, SK Hynix, SK Telecommunication and CJ. He advised nine PhDs and 56 Master students. He teaches Data Mining and Computational Intelligence at SNU as well as at firms. He received BS and MS in Industrial Engineering at SNU. He won a Fulbright Scholarship to obtain Masters and PhD at University of Washington in Seattle, US, and University of Maryland in College Park, US, respectively.

Conference at a Glance


Oct 12	Oct 12 (Sunday)		Oct 13 (Monday)		: 14 (Tuesday)	Oct 15 (Wednesday)		
		08:00-17:00	Registration	08:00-17:00	Registration	08:00-12:00	Registration	
		08:30-10:10	Technical sessions MA			08:30-10:10	Technical sessions WA	
		10:10-10:30	Coffee break	08:40-10:40	Technical sessions TA	10:10-10:30	Coffee break	
		10:30-11:00	Opening addresses : APIEMS President,					
10:00-18:00	Registration		KIIE President, General Chair	10:40-11:00	Coffee break		Technical sessions	
		11:00-12:00	Keynote speech I (Prof. Chung-Yee Lee: Research issues in Future Logistics)	11:00:12:00	Keynote speech II (Prof. Ronald Askin: Data-Driven Decision Making in Manufacturing)	10:30-12:10	WB	
	Excursion	12:00-13:30	Lunch	12:00-13:00	Lunch	12:10-13:30	Lunch	
		13:30-15:30	Technical sessions MB	13:00-14:00	Keynote speech III (Prof. Sungzoon Cho: Big Data Management)			
13:00-17:20				14:00-14:20	Coffee break			
		15:30-15:50	Coffee break	14:20-16:00	Technical sessions TB			
		15:50-17:50	Technical sessions	16:00-16:20	Coffee break			
	Registration		MC	16:20-18:00	Technical sessions TC			
				13:00-18:00	Poster Session			
18:00-20:00	Welcome Reception			18:30-21:00	General Reception			


				Oct 12 (S	unday)								
10:00-18:00	Registration												
13:00-17:20	Excursion												
18:00-20:00	Welcome Reception												
						ption	·						
			(Oct 13 (N	londay)								
08:00-17:00	Registration												
Room	Room Mara Biyang Udo Chuja Ramada-1 Ramada-2 Ramada-3 Ramada-4												
08:30-10:10	Technical sessions MA												
06.30-10.10	MA1	MA2	MA3	MA4	MA5	MA6	MA7	MA8	MA9				
Session name	Data Mining 1	Management of Technology and Innovations 1	ERP/ E-Business	Service Sciences 1	Quality Engineering & Management 1	Production and Operations Management 1	Metaheuristics	Financial Models & Engineering	Uncertaint Theory (Se sion I)				
	528	100	37	54	23	75	42	41	551				
Paper #	207	111	38	55	28	158	43	146	555				
	276	143	352	108	109	211	175	180	556				
	324	44	360	215	113	269	353	267	584				
	296	97	255	244	226	213	465	273					
10:10-10:30				(Coffee brea	k	-						
10:30-11:00		C	Dpening addre	esses: APIEM	S President, M	(IIE President	, General Cha	ir					
11:00-12:00		Keyn	ote speech I ((Prof. Chung-	Yee Lee: Rese	earch Issues i	n Future Logi	stics)					
12:00-13:30					Lunch								
40.00 45.00		Technical sessions MB											
13:30-15:30	MB1	MB2	MB3	MB4	MB5	MB6	MB7	MB8	MB9				
Session name	Decision Sup- port Systems & Expert Systems	Probability & Statistical Modeling	Ergonomics/ Human Factors 1	Service Sciences 2	Quality Engineering & Managment 2	Production and Operations Management 2	Green Manufacturing/ Management	Transportation	Ergonomics Welfare Ma agement				
	173	190	96	322	227	338	417	73	488				
	254	299	131	401	228	362	550	91	484				
D#	290	333	305	411	229	394	119	103	530				
Paper #	460	224	315	479	346	396	156	312	485				
	700	334	515	470									
	116	3354	326	504	294	442	342	340	471				
·						442	342 361	340 53	471 505				
15:30-15:50	116	3354	326	504 323	294								
15:30-15:50	116	3354	326	504 323	294 307	k							
	116	3354	326	504 323	294 307 Coffee brea	k			505				
15:30-15:50	116 538	3354 450	326 332	504 323 (Techni	294 307 Coffee brea cal sessio	k ons MC	361	53	505 MC9 Education				
15:30-15:50 15:50-17:50 Session	116 538 MC1 Supply Chain	3354 450 MC2 Reliability &	326 332 MC3 Ergonomics/ Human	504 323 () Techni MC4	294 307 Coffee brea cal session MC5 Quality Engineering &	k ons MC MC6	361 MC7 Healthcare	53 MC8 Optimization	505 MC9 Education Support				
15:30-15:50 15:50-17:50 Session	116 538 MC1 Supply Chain Management 1	3354 450 MC2 Reliability & Maintenance	326 332 MC3 Ergonomics/ Human Factors 2	504 323 (Techni MC4 Network Optimization	294 307 Coffee brea cal session MC5 Quality Engineering & Management 3	k ons MC MC6 Simulation 1	361 MC7 Healthcare Systems 1	53 MC8 Optimization Techniques 1	505 MC9 Education Support System				
15:30-15:50 15:50-17:50 Session name	116 538 MC1 Supply Chain Management 1 252	3354 450 MC2 Reliability & Maintenance 118	326 332 MC3 Ergonomics/ Human Factors 2 456	504 323 (C Techni MC4 Network Optimization 407	294 307 Coffee brea cal session MC5 Quality Engineering & Management 3 325	k ons MC MC6 Simulation 1 500	361 MC7 Healthcare Systems 1 482	53 MC8 Optimization Techniques 1 374	505 MC9 Education Support System 501				
15:30-15:50 15:50-17:50 Session	116 538 MC1 Supply Chain Management 1 252 261	3354 450 MC2 Reliability & Maintenance 118 121	326 332 MC3 Ergonomics/ Human Factors 2 456 359	504 323 (C Techni MC4 Network Optimization 407 363	294 307 Coffee brea cal session MC5 Quality Engineering & Management 3 325 328	k ons MC MC6 Simulation 1 500 196	361 MC7 Healthcare Systems 1 482 99	53 MC8 Optimization Techniques 1 374 217	505 MC9 Education Support System 501 562				
15:30-15:50 15:50-17:50 Session name	116 538 MC1 Supply Chain Management 1 252 261 279	3354 450 MC2 Reliability & Maintenance 118 121 153	326 332 MC3 Ergonomics/ Human Factors 2 456 359 393	504 323 (C Techni MC4 Network Optimization 407 363 268	294 307 Coffee brea cal session MC5 Quality Engineering & Management 3 325 328 339	k ons MC MC6 Simulation 1 500 196 424	361 MC7 Healthcare Systems 1 482 99 112	53 MC8 Optimization Techniques 1 374 217 201	505 MC9 Education Support System 501 562 448				

			(Oct 14 (T	uesday)								
08:00-17:00				R	egistratio	on							
Room	Mara	Biyang	Udo	Chuja	Ramada-1	Ramada-2	Ramada-3	Ramada-4	Halla(8F)				
00:40 40:40	Technical sessions TA												
08:40-10:40	TA1	TA2	TA3	TA4	TA5	TA6	TA7	TA8	TA9				
Session name	Supply Chain Management 2	Communication Support	Data Mining 2	Tourism Management/ Topics in IE/MS	Sustainable Management	Simulation 2	Production & Operations Management 1	Logistics Management	Uncertainty Theory (Session II)				
	50	443	128	472	35	98	282	440	558				
	59	535	147	444	114	105	327	477	559				
D "	60	489	203	564	136	221	349	483	560				
Paper #	61	536	392	15	137	272	431	543	561				
	130	480	412	264	291	295	104	344	565				
	161	537	216	225	347	356	218	313	428				
10:40-11:00	Coffee break												
11:00-12:00		Keynote s	speech II (Pro	f. Ronald Ask	in: Data Drive	n Decision M	aking in Manu	facturing)					
12:00-13:00				·	Lunch		·						
13:00-14:00			Keynote sp	eech III (Prof.	Sungzoon Ch	no: Big Data N	lanagement)						
14:00-14:20				C	Coffee brea	k							
	Technical sessions TB												
14:20-16:00	TB1	TB2	TB3	TB4	TB5	TB6	TB7	TB8	TB9				
Session name	Supply Chain Management 3	Management of Technology and Innovations 2	Data Mining 3	Scheduling & Sequencing 1	Knowledge & Information Management	Production & Operations Management 2	Healthcare Systems 2	Flexible Manufacturing Systems	Topics in IE/N				
	165	188	437	122	250	49	95	579	575				
	176	425	469	233	278	124	106	48	354				
Paper #	208	317	486	284	445	151	306	62	378				
	160	150	502	287	297	187	379	286	212				
	234	22	581	309	389	12	76	457	202				
16:00-16:20				C	Coffee brea	k			1				
				Techni	cal sessi	ons TC							
16:20-18:00	TC1	TC2	TC3	TC4					TC9				
Session name	Heuristics/Me- taheuristics	Inventory Mod- eling / Artificial Intelligence	Artificial Intel- ligence	Scheduling & Sequencing 2	_				Lean Production Manage ment				
	70	381	182	399					542				
	464	123	260	405					546				
Paper #	481	101	490	418					94				
·	520	318	391	398	-				545				
	192		499	79	-				547				
13:00-18:00					STER Ses	sion							
	47	149	166	204	220	245	253	265	205				
Paper #	365	366	382	400	414	422	432	435	524				
	451	473	487	522	527	491	420	145					
									4				

			Oct 15	(Wednes	day)								
08:00-12:00				Regist	ration								
Room	Mara	Biyang	Udo	Chuja	Ramada-3	Ramada-4	Ramada-1	Ramada-2					
08:30-10:10	Technical sessions WA												
	WA1	WA2	WA3	WA4	WA5	WA6							
Session name	Inventory Mod- eling & Manage- ment	SCM and Forecasting 1	Production Design & Management 1	Scheduling & Sequencing 3	Fuzzy Logic	Optimization Techniques 2							
	65	92	117	85	30	125							
	80	31	162	120	58	69							
Paper #	71	34	198	177	224	288							
	446	32	222	316	576	577							
	518	102	249	509		415							
10:10-10:30				Coffee	break								
10:30-12:10	Technical sessions TB												
10.30-12.10	WB1	WB2	WB3	WB4	WB5	WB6							
Session name	Industrial Engineering Education	SCM and Fore- casting 2	Production Design & Management 2	Scheduling & Sequencing 4	Quality Engineering & Reliability	Lean Manufacturing							
	526	52	283	329	453	129							
	139	36	348	46	508	371							
Paper #	256	87	350	403	270	553							
	495	413	93	426	517	110							
			84	454	421	516							
12:10-13:30			-	Lur	nch								

Floor Plan

The 15th Asia Pacific Industrial Engineering and Management Systems Conference

to understand the contents of the story by the hearing impaired students to see the mouth of the speaker of the panoramic image. By using our system, the hearing impaired student can understand what a speaker says.

Keywords: Hearing impaired student, Lip motion, Active learning, Panoramic camera

MB9-5(471)

Approach of Health-care Administration Utilizing Purchase Data of School Cafeteria

* Shoji Takechi

Department of Management Systems, Kanazawa Institute of Technology, Japan

E-mail : takechi@neptune.kanazawa-it.ac.jp

This article deals with a case study of the activities for dietary education and improvement based on the highly developed information technology. The activities includes data analysis of large-sized purchase data of the school cafeteria, field investigations, questionnaire surveys and campaign for healthy diet. First, we analyzed more than one hundred thousand purchase data of customers of "a la carte" style cafeteria with over two hundred kinds of supplied dishes during a half of year, and we found the eight clusters about customer's purchase type. Next we analyzed the nutritional intakes of individual purchases and compared the requirements of each nutrient. As results, we found the customers generally had deficient nutrients such as calcium, iron, fiber and some kinds of vitamins, but the customers also had excess nutrients such as fat and salt. Then we conducted the field investigations, and got questionnaires on nutritional knowledge and behavioral selection to survey the reason of the bad balanced nutrients of meals. From the answers of questionnaires, we found that some customers had poor knowledge about well-balanced nutrients of meals. Therefore we launched an awareness campaign for healthy diet in the cafeteria. We displayed some posters showing well-balanced nutrients of meals in the cafeteria area, and provided an application service via cellular phones to check the nutritional intakes of the selected dishes with fun. These campaign suggested the insufficient kinds of nutrients, and promoted to purchase an additional and optimal dish containing the insufficient nutrients.

Keywords: Data mining, Dietary improvement, Healthcare, Purchase data, Service Engineering

MB9-6(505)

Recognition of the Distance between Plant and Human by Plant **Bioelectric Potential**

* XINGYI JIN¹, Hidetaka Nambo², Haruhiko Kimura² ¹ Graduate School of Natural Science & Technology, Kanazawa

University, Japan ² Collage of Science and Engineering, Kanazawa University, Japan

E-mail: xingyi1123@gmail.com

In this paper, we consider the method to recognize the distance between plant and human by plant bioelectric potential. In previous study, it is reported that plant bioelectric potential is affected by the environmental factors around plant. For example, temperature, humidity, atmospheric pressure, human behaviors and so on. In this study, we analyze the plant bioelectric potential when a human is doing walking motion in a place near the plant. It showed that different frequency distributions of plant bioelectric potential when a human is doing

walking motion in different place, and the maximum distance to recognize walking motion is 2m. Therefore, we did some experiment about identification We used FFT to extracting a characteristic from plant bioelectric potential learning by Artificial Neural Network, and used 10-fold cross validation to do the distance recognition experiment. It shows that if we use one person's data to learning, the F-measure is very high. But when we use five persons' data to learning, the F-measure is getting lower. It means every person's characteristic from plant bioelectric potential is different.

Keywords: Plant bioelectric potential, Recognition of basic human behaviors Sensory system

MC1 Supply Chain Management 1

Mara, Monday 15:50-17:50 Chair: Rainisa Hervanto Maranatha Christian University: Indonesia

* : Presenter, * : Corresponding Author

MC1-1(252)

A Multi-Criteria Selection for Inventory Aggregation Problem under Risk Pooling: A Case Study

* Kanokporn Rienkhemaniyom, Nipa Suttachat Graduate School of Management and Innovation, King Mongkut's University of Technology Thonburi, Thailand

E-mail : kanokporn.rie@kmutt.ac.th

Inventory aggregation is one of risk pooling strategies that consolidates downstream demands in order to reduce the total demand variability (or demand risk) of a whole supply chain. It results in a lower inventory level across the whole supply chain. However, it also decreases the redundancy of the supply chain network due to the reduction in warehouse facilities. In other words, it increases the risk of supply chain disruption. In current business environment, where supply chain networks are vulnerable to disruptions from the increasing disruptive events, good supply chain networks should offer some promise of the resiliency when facing disruptions. Therefore, companies should consider the balance between the reduction in the demand risk and the increase in supply disruption risk. In this paper, we consider supply reliability as a measure of supply disruption risk criterion to evaluate multiple inventory aggregation alternatives, which are subjected to the change in number of distribution center. A case study of a consumer product company is used to demonstrate the tradeoffs between cost, customer responsiveness, and supply disruption risk. A multi-criteria selection framework is used to evaluate and rank the best inventory aggregation strategy.

MC1-2(261)

A Multi-Objective Closed-Loop Supply Chain Model For Multiple Generations of a Product with Mandatory Product Take-back

Justin Sison Contreras¹, * Dennis Espinosa Cruz²

¹ Industrial Engineering, De La Salle University - Manila, Philippines

² Industrial Engineering, De La Salle University, Philippines

E-mail : dennis.cruz@dlsu.edu.ph

44

This study proposes a multi-objective mathematical model for a closed-loop supply chain of multiple generations of high technology products with mandatory product take-back, optimizing decisions on the introduction time of generations, production, purchasing, collection and recovery, under economic (i.e. Total profit) and environmental impact (i.e. Total emissions) objectives. The model considers the important link between the successive introduction of multiple generations to the demand quantity and to the quantity of available used products for collection. Current models assume that the levels of demand and used products are known parameters, but this model considers that the introduction of multiple generations prompts changes in the demand due to cannibalization. and changes in the quantity and quality of used products available due to changes in the consumption of the customers such as generation upgrades. A mandatory product take-back program is also included in the model to analyze its effect on the MGP strategy. The model was validated with test parameters. Weighted goal programming was used as the multi-objective approach, and different scenarios were tested for analysis. A common course of action over the scenarios is to have an earlier introduction and later a discontinuation of generations to extend the selling time when the conditions are favorable (e.g. low recycling target, low costs, low emissions), and the opposite when the conditions are unfavorable.

MC1-3(279)

The Proposal of Applying Multi Echelon Inventory to Minimize Supply Chain Total Cost for Soft Drinks

* Santoso - -, Rainisa Maini Hervanto

Industrial Engineering, Maranatha Christian University, Indonesia

E-mail : santoso_ajiank@yahoo.com

Inventory management in a supply chain system was an important factor to be considered. Well managed inventory would have a positive impact to meet demand and especially to minimize supply chain total costs to be incurred by the company. A supply chain usually consists of production and distribution of products between entities that were interconnected with each other. In this study would be discussed how the integration between entities in a supply chain of soft drink products using three echelon concept includes echelon production consists of one plant, echelon distribution center which was spread across in six different areas, and echelon outlet for each distribution center. The model used and could represent the real condition that occurs was a model of Bahagia (1999) which used a heuristic approach to find the optimal solution. There were three flavors of soft drinks which produced by the plant that could be categorized into one product family. Before applying the multi echelon inventory concept, first step was forecasting demand for the future and aggregation process. The integration after aggregation process was the implementation of single cycle policy with the final goal to be achieved were the fulfillment of future demand and minimize supply chain total costs. The supply chain costs included the plant total cost, distribution center total cost,

Keywords: echelon, supply chain, total cost

MC1-4(280)

and outlet total cost.

The Improvement of the Model of Wheat Flour Requirement at Eastern Indonesia by Determining the Number Location of the New Plant

Rainisa Maini Heryanto¹, Senator Nur Bahagia²

Industrial Engineering, Maranatha Christian University, Indonesia Industrial Engineering, Bandung Institute of Technology, Indonesia

E-mail : rainisa heryanto@yahoo.com

Wheat flour was one alternative that became basic ingredient of food for the household sector and even large industrial enterprises to small business units. The increasing number of people also was followed by the increasing of per capita Indonesian consumption of wheat flour and if it wasn't followed by the increasing in the number of production there would be shortage of wheat flour in the future.

In the current condition, the needs of national wheat flour can be met by existing local producers and assisted with import. The number of plants was very low at Eastern Indonesia that was only one small plant that might not meet the demand of wheat flour for that region, while demand would increase from year by year. Therefore, if it wasn't followed by building of new plant at Eastern Indonesia, the shortage of wheat flour will be met by supply from Western Indonesia or import.

The model that was developed in this research used research approach by Y Hinojasa, et al (2000) and Fulya Altiparmak, et al (2007). The first model tried to meet the demand for consumer products in vary locations based on the criteria of the smallest total cost. The second model tried to determine the set of facilities that would be opened and made the distribution network design to meet the demand of consumers based on the smallest total cost. The result was the determination of the number and location of the new wheat flour plant based on the supply chain total cost minimization which included plant total cost. depot total cost, and transportation total cost. The calculation of transportation total cost used research approach which was developed by Archetti, et al (2006) and then determined the distribution route of wheat flour by using the split delivery vehicle routing problem.

MC1-5(355)

Coordination of supply chains with risk-averse members under budget constraints

* Ilkyeong Moon, Xuehao Feng

Department of Industrial Engineering, Seoul National University, Korea

E-mail : ikmoon@snu.ac.kr

 $\underset{\text{Risk-averse preference and budget constraints are commonly considered in real}{\text{Risk-averse preference and budget constraints are commonly considered in real}}$ decision frameworks; however, the supply chain contract literature has not addressed the contract design for supply chains with risk-averse members who have budget constraints. This paper studies a revenue-sharing-and-sales-rebate (RSSR) contract that combines two subcontracts: a revenue-sharing (RS) contract and a sales-rebate (SR) contract for a two-stage supply chain with a risk-averse retailer and a risk-averse manufacturer that have budget constraints. We study supply chain coordination in two commonly used decision frameworks: risk in the utility function and risk in the constraints. First, we demonstrate that some optimal decision rules with risk-averse members are no longer optimal when we consider the budget constraints. Next, this article discusses how the RS, extended RS (ERS), and RSSR contracts work to coordinate the supply chains with risk-averse members under budget constraints. We show the limitations of ERS contract and why the RSSR contract is more appropriate in many cases. We identify three regions of the budget space based on the performances of the RS, ERS, and RSSR contracts. Our analytical and numerical results lend insights into how the managers select an appropriate contract based on their risk-averse preferences and budget scenario.

The Improvement of the Model of Wheat Flour Requirement at Eastern Indonesia by Determining the Number Location of the New Plant

Rainisa Maini Heryanto

Department of Industrial Engineering Maranatha Christian University, Bandung, Indonesia Tel: (+62) 22-2012186, Email: rainisa_heryanto@yahoo.com

Senator Nur Bahagia

Department of Industrial Engineering Bandung Institute of Technology, Bandung, Indonesia Tel: (+62) 22-2509164, Email: senator@mail.ti.itb.ac.id

Abstract. Wheat flour was one alternative that became basic ingredient of food for the household sector and even large industrial enterprises to small business units. The increasing number of people also was followed by the increasing of per capita Indonesian consumption of wheat flour and if it wasn't followed by the increasing in the number of production there would be shortage of wheat flour in the future.

In the current condition, the needs of national wheat flour can be met by existing local producers and assisted with import. The number of plants was very low at Eastern Indonesia that was only one small plant that might not meet the demand of wheat flour for that region, while demand would increase from year by year. Therefore, if it wasn't followed by building of new plant at Eastern Indonesia, the shortage of wheat flour will be met by supply from Western Indonesia or import.

The model that was developed in this research used research approach by Y Hinojasa, et al (2000) and Fulya Altiparmak, et al (2007). The first model tried to meet the demand for consumer products in vary locations based on the criteria of the smallest total cost. The second model tried to determine the set of facilities that would be opened and made the distribution network design to meet the demand of consumers based on the smallest total cost. The result was the determination of the number and location of the new wheat flour plant based on the supply chain total cost minimization which included plant total cost, depot total cost, and transportation total cost. The calculation of transportation total cost used research approach which was developed by Archetti, et al (2006) and then determined the distribution route of wheat flour by using the split delivery vehicle routing problem.

Keywords: wheat flour, plant location, supply chain total cost

1. INTRODUCTION

Wheat flour was one of the food commodities that currently became the basis not only for households, but also for a variety of business sectors ranging from large scale industry until small business units. The consumption of wheat flour were diverse and the increase in population also caused an increase in per capita consumption of wheat flour Indonesian society (Aptindo, 2009)

Indonesia's population was projected to continue to

increase by an average rate of population growth reaches 1.49% per year (BPS, 2010). Based on the growth rate, the population of Indonesia until 2025 was predicted to reach 273.2 million and for Eastern Indonesia is predicted to reach 38.4 million people. Eastern Indonesia covering 12 provinces were spread across the island of Sulawesi (North Sulawesi, West Sulawesi, Central Sulawesi, Gorontalo, South East Sulawesi, and South Sulawesi), Nusa Tenggara Islands (Nusa Tenggara and East Nusa Tenggara Province), Maluku Islands (Maluku Province and North Maluku), and

Papua (Papua and West Papua).

The increasing population was followed by the increasing of the national consumption of wheat flour. Increasing consumption of wheat flour per capita Indonesia reached 17 kilograms per person per year in 2009 and this number was predicted to increase to 25.52 kg in 2025. Increasing consumption should also was followed by increasing production, based on data Aptindo 2009, there were 13 local manufacturers of wheat flour in Indonesia that were spread in various areas with a total production capacity of 8 million tonnes per year. With the increasing production capacity, there might be a shortage of wheat flour for some years later, especially for Eastern Indonesia. In eastern Indonesia today there was only one small plant of wheat flour.

Therefore, for Eastern Indonesia, if it was not followed by the addition of the number of producers in that region, then wheat flour demand for Eastern Indonesia wouldn't be able to be met, and if it was relied on the supply from Java Island it would affect the cost of procurement and transportation was expensive and caused the inflated of sales price.

This research would develope of models to meet the requirement of the national wheat flour for Eastern Indonesia in the future by determining the number and location of the new wheat flour plant at Eastern Indonesia and how the transportation route to fulfill the requirement which result the minimum total cost.

2. METHODOLOGY

Research methods associated with determining the number and location of plant was developed using three main models approach were Y Hinojasa, et al model (2000), Fulya Altiparmak, et al model (2007), and Archetti, et al model (2006). Y Hinojasa, et al model (2000) tried to meet the demand for consumer in vary locations based on the criteria of the smallest total cost and Fulya Altiparmak, et al model (2007) tried to determine the set of facilities that will be open and make the distribution network design to satisfy consumer demand based on the smallest total cost.

A third research approach was determining the distribution of wheat flour from the plant to the depot which was located at Eastern Indonesia. Research approach to determine this distribution using the method of the split delivery vehicle routing problem was developed by Archetti, et al (2006). This method was searching for the minimum total transportation cost from the direct shipping cost and sharing shipping cost. The determination of the sharing route delivery from the wheat flour plant to the depot using matrix saving method.

The development of the three models used in this study aims to determine the number and location of the new wheat flour plant by minimizing the total cost of the supply chain that includes the plant total cost, the depot total cost, and the transportation total cost. Each total cost was divided into cost elements in it. The plant total cost was the sum of the cost to operate the plant, production cost, and holding cost. While the depot total cost was the sum of the cost to operate the depot, the cost of throughput, holding cost, and shortage cost.

Schematically, the stages of development of a mathematical model to determine the location of the new plant and flour as well as the determination of the distribution of the constraints and assumptions used in the model was shown in Figure 1 below. To find the solution, the approach used was a single cycle time (T_k). A single cycle time was the time cycle in which there were certain times (at the beginning or at the end) the cycle time of all entities/subsystems that exist within a value chain system would place an order or initiate production/ordering products at the same time. A single cycle policy was shown in Figure 2.

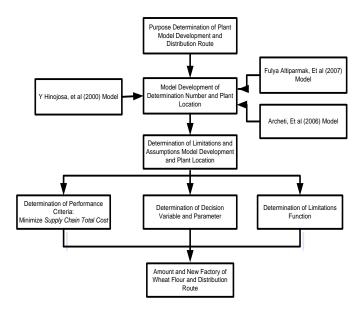


Figure 1: Model Development Stages

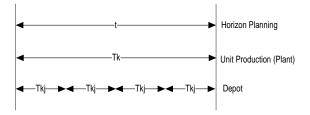


Figure 2: A Single Cycle Policy

2.1 Model Component

2.1.1 Problem and Decision Variable

The problem to be modeled in this study was the determination of the number and location of the new wheat flour plant at Eastern Indonesia. The determination of the inventory total cost using a calculation that occured in every aspect of the structural models of the production units and depots as well as the cost of transportation from the production unit to the depot.

In the model of determining the new location of the wheat flour plant, the decision variables in each structural aspects were:

- a. At depot j:
 - T_{ki}^{t} = ordering cycle length depot j to plant k in period t (year)
 - R_{i}^{t} = maximum inventory at depot j in the ordering cycle in period t (kg)
 - $ss_{i}^{t} = safety stock at depot j in period t (kg)$
- b. At unit production (plant) k:
 - T_k^t = production cycle length at plant k in period t (year)

 - R_{ok}^{t} = maximum inventory at plant k in period t (kg) x_k^t = production size at the plant k in period t (kg/year)

$z_k^t \begin{cases} 1 \text{ if plant } k \text{ operate in period } t \\ 0 \text{ if plant } k \text{ not operate in period } t \end{cases}$

$y_{kj}^{t} \begin{cases} 1 \text{ if plant } k \text{ serve depot } j \text{ in period } t \\ 0 \text{ if plant } k \text{ not serve depot } j \text{ in period } t \end{cases}$

From the results of the decision variable depot and unit production then determined the transportation route can provide a minimum total cost of transportation. The decision variables in the calculation of the cost of transport were:

- a. Number of trip for distribute product from plant k to depot j
- Binary variable that decided whether a mode is used or b. not
- c. Binary variable that decided whether a mode of visiting more than one depot or not

2.1.2 Performance Criteria

Performance criteria used in this model was minimizing the total cost of the supply chain. The cost of the supply chain consisted of the sum of the total expected cost of the plant, the total expected cost of the depot, and the total expected cost of transportation. In the model developed, the performance criterion was expressed as a objective function.

2.1.3 Limitation and Assumption

Limitation for this research:

- 1. Single cycle policy
 - $T_k^t = n_j^t T_{kj}^t$
- 2. Length of production cycle greater than length of production time
 - $T_k^t \ge m_{pk}$
- 3. Number of multiples was an integer and greater equal to
 - $n_i^t \ge 1$ and integer
- 4. Each depot w visited only one mode of depot v
- 5. The vehicles come in a depot would come out at the same time (flow conservation)
- The number of trips all the modes must be less than or 6. equal to the number of depot which include at group delivery β_{ke}^{t} minus one (subtours elimination)
- 7. The number of delivered product using the vehicle b was not exceed its capacity
- 8. Vehicle started and ended at the plant

Assumption for this model:

- 1. Wheat flour demand at each depot j was normal distribution and the request could only be serviced by the manufacturer.
- 2. Demand at the plant was the sum of demand from depot which served by the plant.
- The market could be competitive so that the unserved 3. demand at a depot would be lost (lost sales).
- Wheat flour at depot couldn't be transferred to other 4. depots (non transferable).
- 5. What flour would flow from the production unit \rightarrow depot \rightarrow consumers.
- 6. Wheat flour demand just flew from consumers \rightarrow depot \rightarrow production unit.
- 7. The service level was determined by the results of calculations on the production units and depots.
- 8. Lead time was smaller than order cycle time.
- 9. Raw materials in the production units had been available at the start of production.
- 10. Ordering cost was constant, shortage cost comparable with the number of unserved wheat flour demand and holding cost comparable with the number of stored wheat flour during storage time.
- 11. Maintenance time in the plant was less than the length of the production cycle and the duration is 2 weeks (0.036 years).
- 12. Production rate greater than demand rate.
- 13. Machine efficiency for continuous production unit was 90%

3. MATHEMATICS

In the development of a mathematical model through the determination of new wheat flour plant location, the costs in the logistics systems of wheat flour were grouped into 3 parts, plant total cost expected, depot total cost expected, and transportation total cost expected, where each expectation had each cost components.

3.1 Mathematics Notation

Index Notation

- $j = index \text{ for depot } (j = 1, 2 \dots W)$
- k = index for wheat flour plan (k = 1, 2, ..., M)
- t = index for time (t = 1, 2, ..., T)

Parameter Notation

At plant k:

- g_k^t = operating cost at plan k in period t (IDR/year)
- A_k^t = setup cost at plant k in period t (IDR/kg production rate)
- A_{pk}^{t} = machine maintenance cost at plant k in period t (IDR/maintenance)
- v_k^t = production cost at plant k in period t (IDR/year)
- p_k^t = production cost per kg at plant k in period t (IDR/kg)
- h_k^t = holding cost at plant k in period t (IDR/year)
- H_k^t = holding cost per kg at plant k in period t (IDR/kg)
- m_{pk}^{t} = time production in one production cycle in period t (year)
- m_k^t = time for machine maintenance at plant k in period t (year)
- r_k^t = inventory position at plant k in the end of production cycle in period t (kg)
- d_k^t = demand at plant k in period t (kg/year)
- Q_{kj}^{t} = size to be sent by the plant k to depot j in first cycle (kg)
- ψ_k = production rate at plant k (kg/year)
- β_{ke}^{t} = shipping group from plant k in period t
- af_{ke}^{t} = transportation cost from plant k in shipping group e (IDR/year)
- $apl_{ke}^{t} = direct shipping cost from plant k in shipping group$ e (IDR/year)
- apb_{ke}^{t} = sharing shipping cost from plant k in shipping group e (IDR/year)
- C_f = fix cost trip (IDR/mode)
- C_d = shipping cost per km (IDR/km)
- J_{kj} = distance from plant k to depot j (km)
- J_{vw} = distance from depot v to depot w (km)
- X_{bke} = number of sharing shipping group e from plant k

$$\varphi$$
 = mode capacity (kg)

At depot j:

- o_{j}^{t} = total operating cost at depot j in period t (IDR/year)
- A_{jk}^{t} = ordering cost at depot j to plant k in period t (IDR/order)
- v_j^t = throughput total cost at depot j in period t (IDR/year)
- p_{jk}^{t} = purchasing cost of wheat flour from depot j to plant k in period t (IDR/kg)
- h_{i}^{t} = total holding cost at depot j in period t (IDR/year)
- H_{i}^{t} = holding cost per kg at depot j in period t (IDR/kg)
- d_{i}^{t} = demand at depot j in period t (kg/year)
- N_{i}^{t} = number of shortage at depot j in period t (kg)
- $L_{ki}^{t^3}$ = lead time from plant k to depot j in period t (year)
- \mathbf{B}_{i}^{t} = shortage cost per kg at depot j in period t (IDR/kg)
- $b_i^{t_j}$ = shortage total cost at depot j in period t (IDR/year)
- q_{kj}^{t} = ordering size from depot j to plant k in period t (kg)
- ^{t'9} = inventory position at depot j at the end of ordering cycle in period t (kg)

3.1.1 Component Cost at Depot

Component cost at depot could be grouped into 4 sections were the total cost to operate depot j, throughput total cost at depot j, total holding cost at depot j, and shortage total cost at depot j. Operating cost at depot j during horizon planning was

$$\sum_{t=1}^{T} \sum_{j=1}^{W} o_{j}^{t} = \sum_{t=1}^{T} \sum_{j=1}^{W} \sum_{k=1}^{M} A_{jk}^{t} \frac{1}{T_{kj}^{t}}$$
(1)

Ordering size: $q_{ki}^{t} = R_{j}^{t} - r_{j}^{t}$

Inventory maximum at depot j in period t was

$$R_{j}^{t} = (T_{kj}^{t} + L_{kj}^{t}) d_{j}^{t} + SS_{j}^{t}$$
(3)

Inventory position at the end of ordering cycle was

$$\mathbf{r}_{j}^{t} = \mathbf{L}_{kj}^{t} \mathbf{d}_{j}^{t} + \mathbf{SS}_{j}^{t} \tag{4}$$

Subtitution from (2), (3), and (4) so:

 $q_{ki}^{t} = T_{kj}^{t} d_{j}^{t}$

Throughput total cost was

 $\mathbf{v}_{j}^{t} \!=\! p_{jk}^{t} q_{kjx}^{rt}$

(2)

$$\begin{split} &\sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} \sum_{i=1}^{C} v_{j}^{t} = \sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} \sum_{i=1}^{C} p_{jk}^{t} \left(T_{kj}^{t} \, d_{j}^{t} \right) \frac{1}{T_{kj}^{t}} \\ &\sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} \sum_{i=1}^{C} v_{j}^{t} = \sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} \sum_{i=1}^{C} p_{jk}^{t} \, d_{j}^{t} \end{split}$$
(5)

Inventory position at depot is shown in Figure 3. Total holding cost at depot j in period t was

$$\sum_{t=1}^{T} \sum_{j=1}^{W} \sum_{k=1}^{M} h_{j}^{t} = \sum_{t=1}^{T} \sum_{j=1}^{W} \sum_{k=1}^{M} H_{j}^{t} \left(R_{j}^{t} - d_{j}^{t} L_{kj}^{t} + \frac{T_{kj}^{t} d_{j}^{t}}{2} + N_{j}^{t} \right)$$
(6)

Shortage total cost at depot j in period t:

$$\sum_{t=1}^{T} \sum_{j=1}^{W} b_{j}^{t} = \sum_{t=1}^{T} \sum_{j=1}^{W} \frac{B_{j}^{t} N_{j}^{t}}{T_{kj}^{t}}$$
(7)

3.1.2 Component Cost at Plant

Component cost at plant could be grouped into 3 section. They were total cost to operate plant k, total production cost at plant k, and total holding cost at plant k. Operating cost at plant k during one horizon planning (during period t or one year) was

$$\sum_{t=1}^{T} \sum_{k=1}^{M} g_{k}^{t} = \sum_{t=1}^{T} \sum_{k=1}^{P} (A_{k}^{t} \psi_{k}) + A_{pk}^{t}$$
(8)
While: $\psi_{k} = \frac{\sum_{t=1}^{T} \sum_{j=1}^{W} d_{j}^{t}}{90\%}$

Total production cost was

t

$$v_{k}^{t} = p_{k}^{t} x_{k}^{t}$$

$$\sum_{t=1}^{T} \sum_{k=1}^{M} v_{k}^{t} = \sum_{t=1}^{T} \sum_{k=1}^{M} p_{k}^{t} x_{k}^{t}$$
(9)

Maximum inventory at plant k was

$$R_{ok} = \sum_{t=1}^{T} \sum_{k=1}^{M} (d_k^t T_k^t (1 - \frac{d_k^t}{\psi_k}) + \sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} (d_j^t T_{kj}^t) y_{kj}^t + \sum_{t=1}^{T} \sum_{j=1}^{W} (SS_j^t) y_{kj}^t$$
(10)

Beginning inventory at plant k was

$$r_{k}^{t} = \sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} (d_{j}^{t} T_{kj}^{t}) y_{kj}^{t} + \sum_{t=1}^{T} \sum_{j=1}^{W} (SS_{j}^{t}) y_{kj}^{t} + \sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} (d_{j}^{t} L_{kj}^{t}) y_{kj}^{t}$$
(11)

From (10) and (11), so production size at the plant k was

$$\begin{aligned} x_{k}^{t} = & R_{ok}^{t} - r_{k}^{t} \\ x_{k}^{t} = & \sum_{t=1}^{T} \sum_{k=1}^{M} (d_{k}^{t} T_{k}^{t} (1 - \frac{d_{k}^{t}}{\psi_{k}}) - \sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} (d_{j}^{t} L_{kj}^{t})) y_{k}^{t} \end{aligned}$$

Inventory position at plant was shown in Figure 4. Total holding cost at plant k in period t:

$$\begin{split} &\sum_{t=1}^{T} \sum_{k=1}^{M} h_{k}^{t} = \sum_{t=1}^{T} \sum_{k=1}^{M} H_{k}^{t} \left(\frac{1}{2} \left(\sum_{t=1}^{T} \sum_{j=1}^{W} (d_{j}^{t} T_{kj}^{t}) + \right. \\ &\left. \sum_{t=1}^{T} \sum_{k=1}^{M} \sum_{j=1}^{W} (d_{j}^{t} L_{kj}^{t}) y_{kj}^{t} + \right. \\ &\left. T_{k}^{t} d_{k}^{t} \left(1 - \frac{d_{k}^{t}}{\psi_{k}} \right) + \sum_{t=1}^{T} \sum_{j=1}^{W} (SS_{j}^{t}) y_{kj}^{t} \right) \end{split}$$
(12)

From (1), (5), (6), (7), (8), (9), and (12) we can find the total cost from depot and plant.

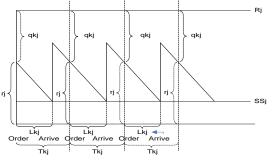


Figure 3: Inventory Position at Depot

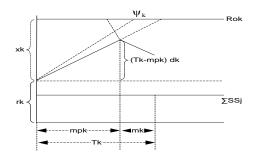


Figure 4: Inventory Position at Plant

3.1.3 Transportation Cost

Shipping cost at plant k in every ordering cycle plant k for shipping group β_{ke}^t consist of direct shipping cost and sharing shipping cost.

$$af_{ke}^{t} = apl_{ke}^{t} + apb_{ke}^{t}$$
(13)

Direct shipping cost was

$$apl_{ke}^{t} = \sum_{t=1}^{T} \sum_{j \in \beta_{ke}} \frac{1}{\varphi} (q_{kj}^{t}) (C_{f} + C_{d} 2J_{kj})$$
(14)

Sharing shipping cost was

$$apb_{ke}^{t} = \sum_{b} X_{bke} \left(\sum_{v \neq w \in \beta_{ke}} C_{d} 2J_{vw} + C_{f} \right)$$
(15)

3.2 Model Solution and Algorithm

The steps to reach the solution as follows:

- 1. Substitution limitation (1) with the total cost formula from depot and plant
- 2. Derive the above equation to $c T_{kj}^{t}$ to find T_{kj}^{t} optimal for certain value n_{j}^{t} , so:

$$\frac{\partial (TC_{dep} + TC_{plant})}{\partial T_{kj}^{t}} = 0$$

$$T_{kj}^{t^{2}} = \frac{2(\sum_{t=1}^{T}\sum_{j=1}^{W}\sum_{k=1}^{M}A_{jk}^{t} + \sum_{t=1}^{T}\sum_{j=1}^{W}B_{j}^{t}N_{j}^{t})}{\sum_{t=1}^{T}\sum_{j=1}^{W}\sum_{k=1}^{M}H_{j}^{t}(d_{j}^{t})) + \sum_{t=1}^{T}\sum_{k=1}^{M}H_{k}^{t} + n_{j}^{t}d_{k}^{t}(1 - \frac{d_{k}^{t}}{\psi_{k}})}$$
(16)

 Because T_k^t as same as length of horizon planning (T) so multiple value of ordering cycle was:

$$n_{j}^{t} = \frac{T}{T_{kj}^{t}}$$
(17)

4. R_{j}^{t} optimal obtainable with derive total cost formula from depot and plant to R_{j}^{t}

$$\frac{\partial (TC_{dep} + TC_{plant})}{\partial R_{j}^{t}} = 0$$

$$\alpha = \int_{r_{jjx}^{t}}^{\infty} (f(y_{j}) dy_{j}) = \sum_{t=1}^{T} \sum_{j=1}^{W} \sum_{k=1}^{M} \frac{T_{kj}^{t} (H_{j}^{t} + H_{k}^{t})}{T_{kj}^{t} H_{j}^{t} + T_{kj}^{t} H_{k}^{t} + B_{j}^{t}} y_{kj}^{t} (18)$$

Before enter the stage of final solution, first necessary to determine the length of horizon planning where the length of the planning horizon will be the same as the length of the production cycle at plant. In research on determining the number and location of the new wheat flour plant there were 5 candidates for the location of the plant site and one was certain plant so that there would be a number of $\sum_{6} C_x$ solution. Of each solution generated will be known candidate plant which will be opened by inserting a binary decision variable (1 or 0).

In the calculation of all elements of the plant k cost serviced depot j also uses a binary decision variable (1 or 0), where if depot j serviced by plant k, it would be given 1 binary variable, whereas if it was not serviced by plant k it would be given a value of 0. The next step was the input parameters required for the calculation and determination of the initial solution by following these steps:

1. Initial solution

- For calculating T_{kj}^t , n_j^t , and R_j^t found by iterative using sthe Hadley Within following way:
- a. Calculate the length of ordering cycle from depot j to plant k with formulation:

$$\Gamma_{kj}^{t} = \sqrt{\frac{2A_{jk}^{t}}{d_{j}^{t}H_{j}^{t}}}$$

- b. Calculate α with equation (18)
- c. Calculate the number of multiple cycle at depot j with equation (17)
- d. Calculate the number of maximum inventory at depot j with formulation:

$$R_{j}^{t} = \sum_{t=1}^{T} \sum_{j=1}^{W} \sum_{k=1}^{M} (d_{j}^{t} T_{kj}^{t} + d_{j}^{t} L_{kj}^{t} + z_{\alpha} S_{j}^{t} \sqrt{T_{kj}^{t} + L_{kj}^{t}})$$

e. Calculate the number of shortage at each depot with formulation:

$$N_{j}^{t} = S_{j}^{t} \sqrt{T_{kj}^{t} + L_{kj}^{t}} \left[f(z_{\alpha}) - z_{\alpha} \psi(z_{\alpha}) \right]$$

f. Calculate total cost depot with equation

The above solution was a solution to get the initial T_{kj}^{t} value, so that the required iterations to find a solution that can provide a total minimum cost.

- 2. Iteration reduction in T_{kj}^{t} value
 - a. Do a reduction in the value iteration as one unit, then back to the first phase of step b up to f
 - b. If the new results of depot total cost were smaller than early, followed by repeating the reduction iteration step 2 point a
 - c. If the new results of depot total cost was larger than

early, stop and try to increase T_{kj}^t until find the optimal value that give minimum depot total cost.

- 3. Iteration increase in T_{kj}^{t} value
 - a. Do increase in the value iteration as one unit, then back to the first phase of step b up to f
 - b. If the new results of depot total cost was smaller than early, followed by repeating the reduction iteration step 3 point a
 - c. If the new results of depot total cost was larger than early, stop and find depot total cost.
- 4. Calculate plant total cost
- 5. Calculate transportation total cost
- 6. Calculate total cost

The above steps were repeated until all possible solutions had been generated based on the number of combinations. Determination of the number and location of the plant based on the minimum total cost of the supply chain of all the possible solutions are generated.

4. DISCUSSION

Model tested using Delphi 2007 software to calculate the total cost of the supply chain. It was one plant location, 5 candidate plant locations, and 12 certain depot location, there were 31 alternatives solutions to determine the optimal location of the new wheat flour plant. From the test results model, total time for iteration was 8 seconds for a total of 31 alternatives and demand to 2025, the results showed the alternative that gave the smallest total cost of the supply chain was 3 plant located in South Sulawesi, Maluku Province, and Province of Papua.

Depot output given by the model for demand conditions in 2025 was shown in Table 1. Results depot output was the result of iterations that provide depot total cost of the smallest (optimal) for each depot location. The output of the plant was given by the model for demand conditions in 2025 was shown in Table 2. Locations plant in Maluku Province would meet the demand of 3 depots, South Sulawesi Province would meet the demand of 8 depots, and only meets the demand of Papua Province depot in his own province.

The output for the cost of transportation was provided by the model for demand conditions in 2025, all the requests from each depot filled with plant direct shipping and no sharing shipping.

Model validation was done by comparing the development of the model with the current system conditions. In the present conditions, there was only one wheat flour plant in Eastern Indonesia with a production capacity of 750,000 tons per year. The plant would meet the demand of wheat flour at Eastern Indonesia and if there were shortage, it would be met from Western Indonesia.

Sensitivity analysis was the analysis used to determine changes in the parameters and effects of changes in the coefficients of the continuous decision variables of the objective function after obtained optimal solution. Sensitivity analysis for the model developed in this study carried out on ordering cost and holding cost parameter with the increase and decrease respectively 10% of the initial conditions. Based on the calculation of the total cost of the supply chain with ordering cost and holding cost parameter change, it turned to increase and decrease costs by 10% provide significant solution changes in the number and location of the new wheat flour plant.

5. CONCLUSION

Based on the results of the model testing and discussion it could be given some conclusions:

- a. The model developed was a model for determining the number and location of the new wheat flour plant and solved by using Delphi 2007 software, the model successfully determine the location of a new wheat flour plant in Eastern Indonesia.
- b. The development model found the minimum supply chain total cost, where the supply chain total cost was calculated by the sum of the depot total cost, the plant total cost, and the transportation total cost.
- c. There was one plant with certain location, 5 candidate plant locations, and 12 depot locations and would meet the demand for wheat flour at Eastern Indonesia until 2025 to build two new wheat flour plants at Maluku Province with a production rate of 106,000 tonnes/year and Papua Province with production rate of 64,000 tons/year in addition to existing plant that was in the province of South Sulawesi with the production rate of 750,000 tonnes/year.
- d. The supply chain total cost resulting in the establishment of two new plants in the Maluku Province and Papua Province in addition to existing plant in the South Sulawesi Province was 8,088,855,266,523.43 IDR/year, which includes the depot total cost 4,635,747,144,720.79 IDR/year (57.3%), the plant total cost of 3,437,069,277,869.06 IDR/year (42.5%), and transportation total cost of 16,038,843,933.58 IDR/year (0.2%).
- e. Model was valid because it gave better results in the supply chain total cost generated by the difference compared to the current condition in which there was only one wheat flour plant in South Sulawesi with production rate reached only 750,000 tons/year. The difference between the supply chain total costs with the existing condition that the solution given by the model reach 4,045,269,392.00 IDR

Heryanto and Bahagia

Table 1: Depot Total Cost

Prov.	Tk (year)	nj	Tkj (year)	R (kg)	N (kg/year)	Operating Cost (IDR/year)	Througput Cost (Rp/tahun)	Holding Cost (IDR/year)	Shortage Cost (IDR/year)	Total Cost (IDR/year)
West Nusa Tenggara	1	16	0.06114	12,616,605.64	3,959.13	134,117,437.98	690,947,919,890.00	928,289,996.95	1,061,977,987.69	693,072,305,312.62
East Nusa Tenggara	1	23	0.0426	9,550,348.29	2,255.01	255,585,207.15	904,483,670,008.71	1,298,052,494.07	1,152,696,565.07	907,190,004,275.00
North Sulawesi	1	11	0.08726	7,978,351.65	2,360.54	77,445,668.97	285,779,184,658.63	326,196,910.26	365,627,499.72	286,548,454,737.58
Central Sulawesi	1	14	0.07195	7,735,542.09	2,371.04	105,604,109.53	354,247,072,887.01	467,143,596.47	500,783,669.57	355,320,604,262.59
South Sulawesi	1	21	0.04677	17,637,154.12	4,138.91	154,467,117.47	1,084,549,031,287.94	930,684,010.67	1,278,651,500.79	1,086,912,833,916.87
South East Sulawesi	1	13	0.07887	6,763,894.58	2,031.74	96,904,870.71	292,551,939,431.11	419,414,616.97	393,770,413.73	293,462,029,332.51
Gorontalo	1	9	0.10709	3,789,149.38	1,453.45	69,009,576.67	129,697,295,641.88	217,804,742.46	200,604,132.29	130,184,714,093.30
West Sulawesi	1	9	0.11242	4,235,068.21	1,614.88	60,953,946.67	132,102,529,665.98	189,629,641.62	196,866,252.18	132,549,979,506.45
Maluku	1	12	0.08277	4,393,061.94	1,336.09	96,658,535.96	202,692,828,720.00	321,130,947.00	258,289,027.53	203,368,907,230.49
North Maluku	1	11	0.08974	3,174,899.08	933.25	89,144,114.58	131,995,588,160.00	225,720,655.43	166,388,268.89	132,476,841,198.90
Papua	1	15	0.06806	5,043,125.37	1,575.01	126,966,195.25	286,585,013,562.87	444,476,792.18	399,946,769.24	287,556,403,319.54
North Papua	1	11	0.08888	2,526,390.19	749.72	105,392,560.54	126,574,853,360.75	265,792,540.71	158,029,072.95	127,104,067,534.95

Tabel 2: Plant Total Cost

Plant Location	Maluku Prov.	South Sulawesi Prov.	Papua Prov.
Prouction Rate (kg/year)	106,000,000	750,000,000	64,000,000
Rok (kg)	60,209,976.12	163,894,967.71	36,374,173.56
SS (kg)	5,188,239.22	38,948,836.81	2,785,948.56
Operating Cost (IDR/year)	235,070,900.00	1,688,236,000.00	141,929,600.00
Production Size (kg/year)	55,221,456.94	479,918,844.74	33,164,149.55
Production Cost (IDR/year)	331,328,741,635.56	2,879,513,068,457.75	198,984,897,300.00
Holding Size (kg/year)	57,948,064.22	150,519,125.08	35,245,585.15
Holding Cost (IDR/year)	5,273,273,844.30	13,697,240,382.41	3,207,348,249.03
Total Cost (IDR/year)	338,290,251,479.87	2,894,898,544,840.16	203,880,481,549.03

f. Based on the result of the sensitivity analysis, the parameter changed by 10% the ordering cost and holding cost parameter up and down turned out to provide a change solutions in determining the number and location of the new wheat flour plant, thus it could be said that the model was sensitive to ordering cost and holding cost parameter.

REFERENCES

- Altiparmak, Fulya, Mitsuo Gen, Lin Lin, and Ismail Karaoglan. 2009: A Steady-State Genetic Algorithm for Multi-Product Supply Chain Network Design, Computers and Industrial Enggineering, 56, 521–537.
- Anily, S. and Bramel, J., 1999: Vehicle Routing and the Supply Chain, 149-196 dalam Tayur, S. Geneshan, R. dan Magazine, M., Eds. Quantitative Models for Supply Chain Management. 885p, Kluwer Academic Publisher, USA.
- Archetti, C., Speranza, M.G. and Hertz, A. 2006: A Tabu Search Algorithm for the Split Delivery Vehicle Routing Problem. Transportation Science, 40(1), 64073.
- Bordin, L. Bruce G., Assad, A, and Ball, M. 1983: *Routing and Scheduling of Vehicle and Crews*. the State of the Art, Computers and Operations Research, 10. 211-263.

- Bowersox, D. J., Closs, D. J., dan Cooper, M. B., 2007: Supply Chain Logistics Management. McGraw-Hill, New York.
- Chopra, S. and Meindl, P., 2007: Supply Chain Management: Strategy, Planning, and Operation 3rd Edition. Pearson Prentice Hall, New Jersey.
- Eilon, S., Watson-Gandy, C. D. T., and Christofides, N. 1971: Distribution Management, Mathematical Modelling and Practical Analysis. Griffin, London.
- Hinojasa, Y, J Puerto, F. R. Fernandez. 2000: A Multiperiod Two Echelon Multicommodity Capacitated Plant Location Problem, European Journal of Operational Research, 123, 271 – 291.
- Nur Bahagia, S. 2006: *Sistem Inventori*. Penerbit ITB, Bandung.
- Santoso, Amelia, Senator Nur Bahagia, and Dwiwahju Sasongko. 2007. Integrated Production Distribution Planning with Time Dependent Demand in Multi Echelon Supply Chain, Proceedings of the 2nd International Conference on Operations and Supply Chain Management, 1039-1046.
- Simchi-Levi, D., P. Kaminsky, dan E. Simchi-Levi. 2008: Designing and Managing Supply Chain: Concept and Case Studies. McGraw-Hill Companies Inc, Singapore.

The 15th Asia Pacific Industrial Engineering and Management Systems Conference October 12-15, 2014, Ramada Plaza Jeju Hotel Jeju Island, Korea

To whom it may concern,

The APIEMS 2014 organizing committee is here to certify that the following personnel has been present at the 15th Asia Pacific Industrial Engineering and Management Systems Conference (APIEMS 2014) which was held at Ramada Plaza Jeju Hotel, Jeju, Korea from 12th to 15th of October 2014.

The detailed information about the conference is available at <u>http://www.apiems2014.org</u>.

If you have any inquires with respect to this certificate, please contact us at secretariat@apiems2014.org

Certification for Presenter

Rainisa Maini Heryanto Country : Indonesia

We highly appreciate your contribution to the APIEMS 2014.

Sincerely yours,

Chi h. Tum

Chi-Hyuck Jun, Ph.D. General Chair, APIEMS 2014 Professor, Industrial & Management Engineering, POSTECH, Korea

Secretariat of the APIEMS 2014: Sejong Convention Services Co., Ltd. Address: Room 505, TaeYang Bldg., 67-gill, Yeouidaebang-ro 22, Yeongdeungpo-ku, Seoul, 150-890, Korea. Tel: +82-2-783-3473~4 / Fax: +82-2-783-3475 /E-mail: secretariat@apiems2014.org