

ISBN: 978-1-4799-8177-9

Proceedings of

2014 International Conference

on Data and Software Engineering (ICODSE)

Institut Teknologi Bandung, Indonesia

November 26th – 27th, 2014

2014 International Conference on Data and Software Engineering (ICODSE)

Copyright © 2014 by the Institute of Electrical and Electronics Engineers, Inc, All rights reserved.

Copyright and Reprint Permission

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S.

copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page,

provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923.

Other copying, reprint or reproduction requests should be address to IEEE Copyrights Manager, IEEE Service

Center, 445 Hoes Lane, P.O. Box 1331 Piscataway, NJ 08855-1331.

IEEE Catalog Number CFP14AWL-USB

ISBN 978-1-4799-8177-9

Additional copies of this publication are available from

Curran Associates, Inc

57 Morehouse Lane

Red Hook, NY 12571 USA

+1 845 758 0400

+1 845 758 2633 (FAX)

email: curran@proceedings.com

2014 International Conference on Data and Software Engineering

i

General Chair’s Message

Welcome to 2014 ICODSE.

It is a pleasure for us to host the 2014 International Conference on Data and Software

Engineering (ICODSE) at Institut Teknologi Bandung (ITB) campus, Bandung, Indonesia. The

conference is organized by Data and Software Engineering Research Group, School of

Electrical Engineering and Informatics, Institut Teknologi Bandung. 2014 ICODSE is co-

organized by Vienna University of Technology, Austria, and ASEA Uninet. 2014 ICODSE is

also technically co-sponsored by IEEE Indonesia Section.

The 2014 ICODSE conference aims at uniting researchers and professionals in the domains

of data and software engineering, presenting and discussing high-quality research results and

outcomes in their fields. This year, the conference welcomes contributions for 2 tracks: Data

Engineering and Software Engineering.

In total, we received 130 submissions of authors from 10 countries around the world. All

submissions were peer-reviewed (blind) by at least three reviewers drawn from external

reviewers and the committees, and as the result, 68 papers were accepted to be presented in

this conference. These papers are in the proceedings of 2014 ICODSE.

Finally, as the General Chair of the Conference, I would like to express my deep appreciation

to all members of the Steering Committee, Technical Programme Committee, Organizing

Committee and Reviewers who have devoted their time and energy for the success of the

event.

For all participants, I wish you an enjoyable conference in this beautiful city of Bandung.

Bayu Hendradjaya

General Chair of the ICoDSE2014

2014 International Conference on Data and Software Engineering

ii

Committee

General Chair
Bayu Hendradjaya Institut Teknologi Bandung - Indonesia

Steering Committee
Benhard Sitohang Institut Teknologi Bandung - Indonesia

A Min Tjoa Vienna University of Technology - Austria

Ford Lumban Gaol IEEE - Indonesia

Iping Supriana Institut Teknologi Bandung - Indonesia

Richard Lai La Trobe Univesity - Australia

Technical Program Committee
Chair:

Wikan Danar Sunindyo Institut Teknologi Bandung - Indonesia

Members:

Adila Alfa Krisnadhi Wright State University - USA
Agung Trisetyarso Universitas Telkom - Indonesia
Ahmad Ashari Gadjah Mada University - Indonesia
Amin Anjomshoaa Vienna University of Technology - Austria
Ary Setijadi Prihatmanto IEEE Indonesia Computer Society Chapter
Arya Ardiansyah Eindhoven University of Technology - the Netherlands
Ayu Purwarianti IEEE Indonesia Education Activity Committee
Bayu Hendradjaya Institut Teknologi Bandung - Indonesia
Bernardo Nugroho Yahya Ulsan National Institute of Science & Technology - South Korea
Chitra Hapsari Ayuningtyas Alpen-Adria-Universitat Klagenfurt - Austria
Dade Nurjanah Telkom University - Indonesia
Dang Tran Khanh Ho Chi Minh City University of Technology - Vietnam
David Taniar Monash University - Australia
Dwi Hendratmo Widiyantoro Institut Teknologi Bandung - Indonesia
Erich Neuhold IFIP Technical Committee on Information Technology Application
Estefania Serral Asensio KU Leuven, Belgium
Fathul Wahid Universitas Islam Indonesia - Indonesia
Fazat Nur Azizah Institut Teknologi Bandung - Indonesia
GA Putri Saptawati Institut Teknologi Bandung - Indonesia
Gerald Quirchmayr University of Vienna - Austria
Josef Küng Johannes Kepler University of Linz - Austria

2014 International Conference on Data and Software Engineering

iii

Khabib Mustofa Gadjah Mada University - Indonesia
Ladjel Bellatreche Laboratorie d'Informatique Scientifique et Industrielle - France
Maguelonne Teisseire University of Montpellier 2 - France
Michel Hassenforder UHA – France
MM Inggriani Institut Teknologi Bandung - Indonesia
Muhammad Asfand-e-yar Masaryk University - Czech Republic
Muhammad Ilyas University of Sargodha - Pakistan
Nguyen Duy Thanh Ho Chi Minh City University of Technology - Vietnam
Robert P. Biuk-Aghai University of Macau - PR China
RV Hari Ginardi Institut Teknologi Sepuluh Nopember - Indonesia
Saiful Akbar Institut Teknologi Bandung - Indonesia
Siti Rochimah Institut Teknologi Sepuluh Nopember - Indonesia
Soleh Udin Al Ayubi Boston Children's Hospital - USA
Stephane Bressan National University of Singapore - Singapore
Vladimír Mařík Czech Technical University in Prague - Czech Republic
Wenny Rahayu La Trobe University - Australia
Wichian Chutimaskul King Mongkut's University of Technology Thonburi - Thailand
Wikan Danar Sunindyo Institut Teknologi Bandung - Indonesia
Yan Tang European Space Agency - Netherland
Yudho Giri Sucahyo University of Indonesia - Indonesia
Yudistira D. W. Asnar Institut Teknologi Bandung - Indonesia
Zainal Arifin Hasibuan University of Indonesia - Indonesia

Organizing Committee
Adi Mulyanto Institut Teknologi Bandung - Indonesia

Christine Suryadi Institut Teknologi Bandung - Indonesia

Hira Laksmiwati Soemitro Institut Teknologi Bandung - Indonesia

Riza Satria Perdana Institut Teknologi Bandung - Indonesia

Tricya E. Widagdo Institut Teknologi Bandung - Indonesia

Yani Widyani Institut Teknologi Bandung - Indonesia

2014 International Conference on Data and Software Engineering

iv

Reviewers

A. Imam Kistijantoro Institut Teknologi Bandung - Indonesia
Adila Krisnadhi Wright State University - USA
Aditya Dakur Hubvents VIT University - India
Agung Trisetyarso Telkom University - Indonesia
Amin Anjomshoaa Vienna University of Technology -Austria
Anto Nugroho BPPT – Indonesia
Artem Lenskiy Korea University of Technology and Education - South Korea
Ary Prihatmanto Institut Teknologi Bandung - Indonesia
Arya Adriansyah Eindhoven University of Technology - the Netherlands
Ayu Purwarianti Institut Teknologi Bandung - Indonesia
Bayu Hendradjaya Institut Teknologi Bandung - Indonesia
Benhard Sitohang Institut Teknologi Bandung - Indonesia
Bernaridho Hutabarat UPI YAI - Indonesia
Dade Nurjanah Telkom University - Indonesia
David Taniar Monash University - Australia
Dessi Puji Lestari Institut Teknologi Bandung - Indonesia
Dicky Prima Satya Institut Teknologi Bandung - Indonesia
Dwi Hendratmo Widyantoro Institut Teknologi Bandung - Indonesia
Estefania Serral Asensio KU Leuven - Belgium
Fathul Wahid Universitas Islam Indonesia - Indonesia
Fazat Nur Azizah Institut Teknologi Bandung - Indonesia
G. A. Putri Saptawati Institut Teknologi Bandung - Indonesia
Hira Laksmiwati Institut Teknologi Bandung - Indonesia
Indriana Hidayah Gadjah Mada University - Indonesia
Iping Supriana Suwardi Institut Teknologi Bandung - Indonesia
Jamaiah Yahaya The National University of Malaysia - Malaysia
Ketut Wikantika Institut Teknologi Bandung - Indonesia
Khabib Mustofa Gadjah Mada University - Indonesia
Lukman Heryawan Gadjah Mada University - Indonesia
Maguelonne Teisseire University of Montpellier 2 - France
Mahmoud Neji Sfax University - Tunisia
Maman Fathurrohman Universitas Sultan Ageng Tirtayasa - Indonesia
Masayu Leylia Khodra Institut Teknologi Bandung - Indonesia
Mewati Ayub Maranatha Christian University - Indonesia
MM Inggriani Liem Institut Teknologi Bandung - Indonesia
Muhammad Asfand-e-yar Masaryk University - Czech Republic
Noor Maizura Mohamad Noor Universiti Malaysia Terengganu - Malaysia
Nur Ulfa Maulidevi Institut Teknologi Bandung - Indonesia

2014 International Conference on Data and Software Engineering

v

Oerip Santoso Institut Teknologi Bandung - Indonesia
Ponmagal Rajendran M G R Educational and Research Institute University - India
Rajesri Govindaraju Institut Teknologi Bandung - Indonesia
Restya Astari Institut Teknologi Bandung - Indonesia
Richard Lai La Trobe University - Australia
Richki Hardi University of Ahmad Dahlan - Indonesia
Rila Mandala Institut Teknologi Bandung - Indonesia
Rinaldi Munir Institut Teknologi Bandung - Indonesia
Robert P. Biuk-Aghai University of Macau - PR China
Saiful Akbar Institut Teknologi Bandung - Indonesia
Siti Rochimah Institut Teknologi Sepuluh Nopember - Indonesia
Soleh Udin Al Ayubi Boston Children's Hospital - USA
Soon Chung Wright State University - USA
Suhardi Suhardi Institut Teknologi Bandung - Indonesia
Thanh D. Nguyen Ho Chi Minh City University of Technology - Vietnam
Thomas Basuki Universitas Parahyangan - Indonesia
Tran Khanh Dang Ho Chi Minh City University of Technology - Vietnam
Tricya Widagdo Institut Teknologi Bandung - Indonesia
Wikan Danar Sunindyo Institut Teknologi Bandung - Indonesia
Yani Widyani Institut Teknologi Bandung - Indonesia
Yudistira Dwi Wardhana Asnar Institut Teknologi Bandung - Indonesia

2014 International Conference on Data and Software Engineering

vi

Contents

Data Engineering Track

A Method for Automated Document Classification Using Wikipedia-Derived
Weighted Keywords
Robert P. Biuk-Aghai, Ka Kit Ng

 1

A New Direct Access Framework for Speaker Identification System
Hery Heryanto, Saiful Akbar, Benhard Sitohang

 7

A New Scheme to Hide the Data Integrity Marker on Vector Maps Using A
Feature-Based Fragile Watermarking Algorithm
Shelvie Nidya Neyman, Yudhy Haryanto Wijaya, Benhard Sitohang

 12

A Semantic Framework for Data Integration and Communication in Project
Consortia
Fajar J. Ekaputra, Estefania Serral, Dietmar Winkler, Stefan Biffl

 18

Analysis and Modeling of Sequential Pattern as Multimedia Data
Representation
Dini Nurmalasari, Gusti Ayu Putri Saptawati

 24

Application Program Interface to Build Executive Information System using Data
Warehouse
Mario Orlando Teng, Tricya Esterina Widagdo

 30

Computing Preset Dictionaries from Text Corpora for the Compression of
Messages
Marc W. Abel, Soon M. Chung

 35

CORRELATION ANALYSIS OF USER INFLUENCE AND SENTIMENT ON
TWITTER DATA
Fadhli Mubarak bin Naifa Hanif, G. A. Putri Saptawati

 40

Data Migration Helper Using Domain Information
Irfan Kamil, M. M. Inggriani, Yudhistira Dwi Wardhana Asnar

 46

Detection of Potential Traffic Jam Based on Traffic Characteristic Data Analysis
Anasthasia Amelia, G. A. Putri Saptawati

 52

Exploration of Classification Using NBTree for Predicting Students' Performance
Tjioe Marvin Christian, Mewati Ayub

 57

Fostering Government Transparency and Public Participation through Linked
Open Government Data
Case Study: Indonesia Public Information Service
Peb R. Aryan, Fajar J. Ekaputra, Wikan D. Sunindyo, Saiful Akbar

 63

Handwriting Recognition Using a Combination of Structural Elements Similarity
Mastur Jaelani, Iping Supriana

 69

2014 International Conference on Data and Software Engineering

vii

Improving Classification Performance by Extending Documents Terms
Widodo, Wahyu Catur Wibowo

 75

Information Extraction of Public Complaints on Twitter Text For Bandung
Government
Dekha Anggareska, Ayu Purwarianti

 80

Information Extractor for Small Medium Enterprise Aggregator
Fabrian Oktavino H., Nur Ulfa Maulidevi

 86

Integration of Search Engine and Recommender System for the Holy Qur'an
Personalization
Lukman Heryawan

 91

Java Archives Search Engine Using Byte Code as Information Source
Oscar Karnalim, Rila Mandala

 97

Modeling of Coastal Upwelling Using Spatiogram and Structuring Elements
Yus Sholva, Benhard Sitohang, Ketut Wikantika

 103

Modeling Unpredictable Data and Moving Object in Disaster Management
Information System based on Spatio-Temporal Data Model
Hira Laksmiwati, Yani Widyani, Nisa'ul Hafidhoh, Atika Yusuf

 108

Natural Language Interfaces to Database (NLIDB): Question Handling and Unit
Conversion
Filbert Reinaldha, Tricya E. Widagdo

 114

On Analyzing of Fingerprint Direct-Access Strategies
G. Indrawan, S. Akbar, B. Sitohang

 120

Predicting Information Cascade on Twitter Using Support Vector Regression
Irfan Aris Nur Hakim, Masayu Leylia Khodra

 126

Predicting Latent Attributes by Extracting Lexical and Sociolinguistics Features
from User Tweets
Muhammad Afif Al hawari, Masayu Leylia Khodra

 132

Predictions based on Twitter - A Critical View on the Research Process
Lisa Madlberger, Amal Almansour

 137

Rule based Approach for Text Segmentation on Indonesian News Article using
Named Entity Distribution
Saniati, Ayu Purwarianti

 143

Semantic Web-based Aggregation of Indonesian Open Development Data
Tubagus Andhika Nugraha, Windy Gambetta

 148

Sentence Extraction in Recognition Textual Entailment Task
Yudi Wibisono, Dwi H. Widyantoro, Nur Ulfa Maulidevi

 154

Smart Buildings: Semantic Web Technology for Building Information Model and
Building Management System

 159

2014 International Conference on Data and Software Engineering

viii

Muhammad Asfand-e-yar, Adam Kucera, Tomáš Pitner

Spatial Data Model for Corporate Based on Google Maps Platform
Iping Supriana Suwardi, Dessi Puji Lestari, Dicky Prima Satya

 165

System Information Log Visualization to Monitor Anomalous User Activity Based
on Time
Jeremy Joseph Hanniel, Tricya E. Widagdo, Yudistira D. W. Asnar

 171

The Application of Rough Set and Fuzzy Rough Set Based Algorithm to Classify
Incomplete Meteorological Data
Winda Aprianti, Imam Mukhlash

 177

Total Information Quality Management-Capability Maturity Model (TIQM-CMM):
An Information Quality Management Maturity Model
Suhardi, I Gusti Ngurah Rama Gunawan, Ardani Yustriana Dewi

 183

Two-stage feature extraction to identify Plasmodium ovale from thin blood
smear microphotograph
Anto Satriyo Nugroho, Made Gunawan, Vitria Pragesjvara, Miranti Jatnia
Riski, Desiani, Inas Ashilah, Isma Hariani, Ismail Ekoprayitno Rozi, Puji Budi
Setia Asih, Umi Salamah, Esti Suryani

 189

Unpredictable Data and Moving Object Handling Prototype Architecture Using
Spatio-Temporal DBMS
Nisa'ul Hafidhoh, Atika Yusuf, Hira Laksmiwati, Yani Widyani

 193

Using Dictionary in a Knowledge Based Algorithm for Clustering Short Texts in
Bahasa Indonesia
Husni Thamrin, Atiqa Sabardila

 198

Using Twitter Data to Improve News Results on Search Engine
Abraham Krisnanda Santoso, G. A. Putri Saptawati

 202

Software Engineering Track

A New Proposal for The Integration of Key Performance Indicators to
Requirements Elicitation Process Originating from Organization Goals
Fransiskus Adikara, Bayu Hendradjaya, Benhard Sitohang

 207

A Quality Model for Mobile Thick Client that Utilizes Web API
Hanny Fauzia, Hira Laksmiwati, Bayu Hendradjaya

 213

A Vulnerability Scanning Tool for Session Management Vulnerabilities
Raymond Lukanta, Yudistira Asnar, A. Imam Kistijantoro

 219

A/B Test Tools of Native Mobile Application
Muhammad Adinata, Inggriani Liem

 225

Academic Information System Quality Measurement Using Quality Instrument:
A Proposed Model
Umi Laili Yuhana, Agus Budi Raharjo, Siti Rochimah

 231

2014 International Conference on Data and Software Engineering

ix

An Application Framework for Evaluating Methods in Biometrics Systems
Satria Ardhe Kautsar, Saiful Akbar, Fazat Nur Azizah

 237

Android Security Assessment Based on Reported Vulnerability
Eko Sugiono, Yudistira Asnar, Inggriani Liem

 243

Automatic Grader for Programming Assignment Using Source Code Analyzer
Susilo Veri Yulianto, Inggriani Liem

 249

Business Process Extraction for Information Technology/Business Alignment
Azmat Ullah, Richard Lai

 253

Case Study on Semantic Clone Detection Based on Code Behavior
Bayu Priyambadha, Siti Rochimah

 259

Case-based Reasoning Approach for Form Interface Design
Dwi H. Widyantoro, U. Ungkawa, Bayu Hendradjaya

 265

Component Design of Business Process Web Content Management System for
Online Shop Website
Rizal Panji Islami, Adi Mulyanto

 271

Design of a Tool for Generating Test Cases from BPMN
Prat Yotyawilai, Taratip Suwannasart

 278

Developing Translation Rules of Java-JML Source Code to Event-B
Faisal Hadiputra, Yudistira D. W. Asnar, Bayu Hendradjaya

 284

Development of Game Testing Method for Measuring Game Quality
Rido Ramadan, Bayu Hendradjaya

 290

Educational platform for learning programming via controlling mobile robots
Artem Lenskiy, Heo Junho, Kim Dongyun, Park Junsu

 296

Efficiency Measurement of Java Android Code
Nugroho Satrijandi, Yani Widyani

 300

Improvement of Adaptable Model Versioning (AMOR) Framework for Software
Model Versioning Using Critical Pair Analysis
Ni Made Satvika Iswari, Fazat Nur Azizah

 305

Input Injection Detection in Java Code
Edward Samuel Pasaribu, Yudistira Asnar, M. M. Inggriani Liem

 310

Integrating Cognitively-oriented and Pedagogically-oriented Methods in
Adaptive Educational Hypermedia
Reza Akhmad Gandara, Dade Nurjanah, Rimba Whidina Ciptasari

 316

Managing Requirements Change in Global Software Development
Naveed Ali, Richard Lai

 322

Measuring the Constraint Complexity of Automotive Embedded Software
Systems
Mohit Garg, Richard Lai

 327

2014 International Conference on Data and Software Engineering

x

Modeling The Requirements for Big Data Application Using Goal Oriented
Approach
Hanif Eridaputra, Bayu Hendradjaya, Wikan Danar Sunindyo

 333

Multi-agent Sentiment Analysis using Abstraction-based Methodology
Timotius Kevin Levandi, M. M. Inggriani, Nur Ulfa Maulidevi

 339

OBD-II Standard Car Engine Diagnostic Software Development
Alex Xandra Albert Sim, Benhard Sitohang

 345

Software Modularization in Global Software Development
Dilani Wickramaarachchi, Richard Lai

 350

Software Reliability Model Selection for Component-Based Real-Time Systems
Mohit Garg, Richard Lai

 356

Software with Service Oriented Architecture Quality Assessment
Aminah Nuraini, Yani Widyani

 362

Vendor Capability for Offshore IT Projects: Analysing a case in Indonesian
Context
Rajesri Govindaraju, Leksananto Gondodiwiryo, Reza Andhika Zairul

 368

Verifying UML-based Interaction Using Coloured Petri Nets
Aditya Bagoes Saputra, Thomas Anung Basuki, Jimmy Tirtawangsa

 373

Visually Scripting Portable BPMN Script Tasks
Jessada Wiriyakul, Twittie Senivongse

 379

Java Archives Search Engine Using Byte Code as
Information Source

Oscar Karnalim
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung, Indonesia

23512012@std.stei.itb.ac.id

Rila Mandala
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung, Indonesia
rila@stei.itb.ac.id

Abstract—Information from computer programs can be extracted
from its source code, external documentation, and compiled code.
Although compiled code is an assured information source which is
always exists in published computer programs, it is seldom used by
the existing search engines since some reverse engineering tasks are
needed. In this research, a search engine for Java archives that uses
byte code (compiled code for Java Archive) as its information
source is developed. It enables user to search within a collection of
Java Archives without relying with source code and external
documentation. Compared with Penta and FindJar [2][7], A novel
term extraction process beyond the file and class name is proposed,
which includes field name, method name, string literal used in
program, program flow weighting, and method expansion.
Exclusive tokenization, stopping, and stemming are also
implemented to improve effectiveness. Based on evaluation, it has a
fairly good effectiveness although it may vary based on terms
stored on index. Its effectiveness is higher than FindJar main
features reimplementation which indicates that detailed compiled
code has positive influences in computer programs search engine.
Efficiency depends on how many terms stored on index and how
many process used at certain step.

Keywords—search engine; Java archive; information extraction;
compiled code; byte code

I. INTRODUCTION
Computer programs could have many variations, such as

executable files, libraries, or source codes. Information from
computer program can be extracted from its source code [1],
external documentation [1], and compiled code [2]. Compiled
code is the most reliable feature since it always exist in published
computer programs. Although the fact that it is the most reliable
feature, it is seldom used since some reverse engineering tasks
are needed on its information extraction step. Some existing
search engine have applied compiled code as its information
source but only limited to file name because of its simple
extraction mechanism.

 Without source code and external documentation, file name
is not good enough to represent computer program as document
in search engine since many file name contains product name and
do not describe its functionality. This problem can be solved by

extracting detailed compiled code features from a computer
program and implementing exclusive tokenization, stopping, and
stemming on its terms.

In this research, a search engine for computer programs that
uses compiled code as its information source is proposed.
Computer program used in this research is Java archive where
each archive is treated as a document and each class included on
it are treated as a part of document. Compiled code used in Java
archive is called byte code which is parsed based on Java SE 7
specification and Java virtual machine compiler [3].

II. RELATED WORK
Information extraction of computer programs that is based on

its source code [1], external documentation [1], and compiled
code [2] has been applied in many researches. Information
extraction based on source code is implemented by Maletic,
Marcus, Kuhn, and Ohloh Code whereas external documentation
is implemented by Maletic and Ohloh Code [1][4][5][6][7].
Maletic and Kuhn use source code comments and identifiers in
their research. Maletic uses it to categorize software components
automatically whereas Kuhn uses it to enrich information on
reverse engineering process and source code topic identification
[1][5][6]. Maletic, Kuhn, and Ohloh Code use source code as
documents to search some source code fragments with
information retrieval approach [4][7]. External documentation is
also used by Maletic and Ohloh Code to improve its
effectiveness. Although compiled code is seldom used, it also has
been applied in some researches. Penta use file name and textual
files in Java Archive to identify its licenses [2]. FindJar use file
name as information source on Java Archive search engine [7].

Information source is a crucial task in search engine’s
indexing process since it determines all terms stored in index.
Search engines for computer programs have been developed in
some researches which some of them are Ohloh Code and
FindJar. Ohloh Code uses source codes as search engine’s
documents whereas FindJar uses file name as its index terms
[7][8].

978-1-4799-7996-7/14/$31.00 ©2014 IEEE
97

2014 International Conference on Data and Software Engineering

In this research, a search engine for computer programs that
extract information based on compiled code is developed by
expanding FindJar main features. Many detailed compiled code
features like class name, field name, method name, and string
literals used in programs are applied. It also uses exclusive
tokenization, stopping, stemming, n-grams concatenation,
program flow weighting, and method expansion mechanism to
improve its efficiency. This research focuses on compiled code as
information source because of its exact whereabouts and limited
to Java Archive as its documents.

III. ANALYSIS AND DESIGN
The search engine applies vector space model with cosine

correlation as its retrieval model and tf-idf weighting as its term
weighting mechanism. Terms are taken by extracting file name,
class name (including package name), method name, field name,
and string literals from class file(s) on Java Archive. These
textual informations are treated as string literals which are
converted to terms by tokenizing, stopping, and stemming.
Tokenization is applied in exclusive way because identifiers must
be considered as set of terms. It is divided to three step which
are:

a. Word tokenization, Input string are split using invalid
identifier character as its separator.

b. Identifier tokenization, Terms which length is higher
than 1 are split using Java naming rules and converted
to lowercase format.

c. Term Concatenation, Terms are concatenated in n-gram
format. This step is also repeated with lower positive n
values. Concatenated terms which length is lower than 2
are ignored.

Stop words are classified to five category that are
programming language keywords (Java and object oriented
language), Java literals, developer terms, client terms, and
English stop words. After stopping, each term are stemmed with
Porter stemmer.

The example of term conversion for input string “Java
ASTTree1988” with n = 2 can be seen in Figure 1. Input string is
separated using invalid identifier character to “Java” and
“ASTTree1988”. Each term are split using Java naming rules and
converted to lowercase format which produces “Java”, “ast”,
“tree”, and “1988” as terms. These terms are concatenated with n
= 2 which produces unigram and bigram format (because it is
repeated until n = 0). This step produces “Java”, “ast”, “tree”,
“1988”, “Javaast”, “asttree”, and “tree1988” as terms. Each term
that is not classified as stop words are stemmed using Porter
stemmer (term “Java” is classified as stop word). So in this case,
input string “Java ASTTree1988” are converted to “ast”, “tree”,
“1988”, “Javaast”, “asttre”, and “tree1988”.

String literals from class files on Java Archive are extracted
by reverse engineering string and method invocation on its byte
code. Each method invocation are replaced by its invoked

method content where each non-recursive method are expanded
till no method invocation exist. This mechanism are used to
minimalize the effect of instructions encapsulation variants (e.g.
function and procedure encapsulation). The example of method
expansion can be seen in Figure 2 and Figure 3. Figure 2
represents method content before expansion where Figure 3
represents method content after expansion. In this example,
method B invocation at instruction 4 in method A are replaced by
the content of method B.

Figure 1. The example of term conversion with n = 2

Figure 2. Method A and B before expansion

Recursive methods are expanded by limiting its expansion at
a certain numeric value. They are detected by selecting all
strongly connected components from method relation graph.

Method A
 1. Instruction 1
 2. Instruction 2
 3. String “precision” invocation
 4. Method B invocation
 5. Instruction 3
 6. String “accuracy” invocation

Method B
 1. Instruction 1
 2. String “search” invocation
 3. Instruction 2

98

2014 International Conference on Data and Software Engineering

Method relation graph is built by treating each method as a node
where each method B invocation in method A is converted to an
edge that points from node A to B. The example of a method
relation graph can be seen in Figure 5 which is generated based
on Figure 4. In this example, each method are converted to nodes
where each method invocation are converted to edges (e.g. edge
from A to B are built based on method invocation B in method
A). Non-recursive methods are strongly connected components
that has only one node without an edge that point itself. Strongly
connected components are marked by rectangle in Figure 5.

Figure 3. Method A and B after expansion

Figure 4. Sample methods for method graph relation example

Figure 5. Method graph based on sample methods

String literals are taken from string invocation in each
expanded methods and weighted based on how high its
probability to be invoked when program runs. The probability is
calculated based on program control flow such as looping,
branching, and exception. Before weighting, program control
flow is converted to graph where each goto represents an edge
and each source or target instruction represents a node
(Exceptions are also remodeled as branching and embedded in
the graph). The probability of each node and edge is calculated as
follows :

a. The first node’s probability is 1 since it is always be
invoked when program runs.

b. For each edge, its probability is calculated by dividing
its source node’s probability with the number of edges
that is sourced from it.

c. For each node, its probability is calculated by sum up all
the weight of edges that target itself (except back
edges).

The example of calculating node and edge probability can be
seen in Figure 6. Node’s probability are summed from the weight
of all non-back edges that point itself (0.25+0.25+0.25=0.75)
whereas each edge’s probability are source node’s probability
divided by the number of edges that is sourced from it (0.75 / 3 =
0.25).

Figure 6. The example of branch weighting

Loops are detected by adopting Miecznikowski’s algorithm
which recognizes loop as while loop, do-while loop, and
unconditional loop (Miecznikowski’s algorithm can be seen in
[10]). Nested loops are detected by removing some conditional
nodes whereas string literals are affected by multiplying its
probability with the number of loops. To avoid zero probability
problem on multiplication step, the number of loops is always
added by 1.

After method expansion and program control flow weighting,
weight of string literal is weighted by tf-idf weighting and treated
as term weight. Each term and its weight are stored in serialized
index which is used as data source on its retrieval step. Retrieval
step are conducted by tokenizing, stopping, and stemming input
query and retrieve all relevant Java Archives based on input
query terms.

Method A
 1. Method B invocation
 2. Instruction 1

Method B
 1. Instruction 1
 2. Method A invocation
 3. Method C invocation

Method C
 1. Instruction 1

Method D
 1. Method A invocation

Method E
 1. Method E invocation

Method A
 1. Instruction 1
 2. Instruction 2
 3. String “precision” invocation
 4.1. Instruction 1
 4.2. String “search” invocation
 4.3. Instruction 2
 5. Instruction 3
 6. String “accuracy” invocation

Method B
 1. Instruction 1
 2. String “search” invocation
 3. Instruction 2

99

2014 International Conference on Data and Software Engineering

IV. EVALUATION AND RESULT
The search engine developed in this research is evaluated by

measuring two main factors which are efficiency and
effectiveness. Efficiency is measured based on index size,
average indexing time, and mean average query latency whereas
effectiveness is measured using mean average precision (MAP)
and recall. Dataset used in this evaluation are FindJar’s sub-
dataset which queries are determined from manual judgement
based on its description. Dataset are taken manually since FindJar
did not provide API to retrieve all data on its dataset at once. The
statistics of dataset used in this research can be seen in Table I.

TABLE I. DATASET STATISTICS

Statistic Variable Values
Number of Java archives in
dataset 552 Java archives

Number of queries in dataset 1860 queries

Number of manual judge 8 judge

Shortest query DJ

Longest query org.apache.sling.jcr.jackrabbit.userm
anager-2.0.2-incubator

Average number of characters in
queries 17.332 characters

Average number of words in
queries 1.161 words

Query with the highest number of
relevant java archives

Spring
(21 Java archives)

Average number of relevant Java
archive for each query 2.298 Java archives

The largest Java archive size in
dataset 7580792 bytes

The smallest Java archive size in
dataset 1764 bytes

Dataset size 146 megabytes

In this research, Influence of each feature is measured in term
of its efficiency and effectiveness which can be seen in Table II.
They are measured in percentage unit which is obtained by
comparing cases where the selected feature exists or absences
(percentage value is based on case where the selected feature
absences). Evaluation are conducted in Windows 7 Ultimate 32-
bit with 4.00 GB RAM, and Intel(IR) Core(TM) i7-3770 CPU @
3.40 GHz 3.90 GHz as its processor.

Method content is the most influential feature in term of
efficiency. It greatly affects index size and mean average query
latency since many string literals used in program are contained
on it. Average indexing time is also greatly affected because
many process needed on its extraction step. Method expansion
and program flow weighting do not affect index size because
they only modify the weight of each index terms.

File name is the most influential feature in term of recall since
most users know which Java Archive they are looking for. Java
Archive is usually named as its product name which is frequently
used as a query. It ensures the selected Java Archive to be

retrieved although in low position. File name does not affects
mean average precision greatly since some product name consists
of common terms which make it more difficult to be put in high
position. Class name greatly affects mean average precision since
many of them are used in the queries and are adequately
represent Java Archive’s functionality.

TABLE II. INFLUENCE OF FEATURES

Features Efficiency Effectiveness
Index size Average

indexing
time

Mean
average
query
latency

Mean
average
precision

Recall

File name 0.151 % 0.253 % 1.046 % 3.428 % 4,939 %

Class name 3.026 % 0.311 % 16.105 % 12.052 % 1.579 %

Field name 12.902 % 1.336 % 24.806 % - 0.484 % 0.115 %

Method
name

11.782 % 0.228 % 21.969 % - 0.866 % 0.346 %

Method
content

56.959 % 729.01 % 99.586 % 0.573 % 2.425 %

Method
expansion

0 % 83.858 % 5.228 % - 0.027 % 0 %

Program
control
flow
weighting

0% 1.077 % 4.772 % 1.205 % 0 %

Some features negatively affect mean average precision since
they contain a lot of common terms which are not explicitly
related with its Java Archive (e.g. method name may contains
some common terms like “build” and “close”). Method
expansion and program control flow weighting do not affect
recall since it only modify index term’s weight.

Recursive methods are expanded by limiting its expansion at
a certain numeric value which is also evaluated in this research.
Influence of each recursive method expansion constant can be
seen in Table III. They are measured by comparing it with default
case (constant value 0).

TABLE III. INFLUENCE OF RECURSIVE METHOD EXPANSION CONSTANT

Recursive
method

expansion
constant

Efficiency Effectiveness
Index size Average

indexing
time

Mean
average
query

latency

Mean
average

precision

Recall

1 0 % 0. 378 % 0.207 % -0.027 % 0 %

2 0 % 6.992 % - 0.207 % -0.028 % 0 %

3 0 % 10.404 % 0.414 % -0.047 % 0 %

Changes in the value of recursive method expansion constant
do not have much impact on index size, mean average query
latency, and recall since it only modify index term’s weight.
Indexing time is proportionally increased to recursive method
expansion constant since expanding recursive method takes a

100

2014 International Conference on Data and Software Engineering

considerable amount of process. Mean average precision is
inversely proportional to recursive method expansion constant
since some terms in recursive method are not explicitly related
with its Java Archive.

Loops that are detected in this research are considered as
constant loops by multiplying its amount with an integer value
called loop constant. The influence of loop constant can be seen
in Table IV which is compared with loop constant 1 as its default
case. Loop constant does not greatly affect its efficiency since it
only adds multiplication process on extraction step. Some terms
in loops are not explicitly relevant to its Java archive, so the
greater loop constant will lower its mean average precision.

TABLE IV. INFLUENCE OF LOOP CONSTANT

Loop
constant

Efficiency Effectiveness
Index size Average

indexing
time

Mean
average
query

latency

Mean
average

precision

Recall

2 0 % 0.441 % 0.207 % - 0.116 % 0 %

3 0 % 0.765 % 0 % - 0.288 % 0 %

4 0 % 0.683 % 0.207 % - 0.372 % 0 %

5 0 % 0.566 % 0.207 % - 0.714 % 0 %

Tokenization step concatenates result token in n-gram format
which initial n values may be vary and also evaluated in this
research. The influence of initial n-gram can be seen in Table V
which result is compared with unigram case (n=1). Index size,
average indexing time, and mean average query latency are
getting larger as n value grows because index terms are also
increasingly varied. Based on dataset, recall is only improved as
n go up from 1 to 2 which means significant terms in Java
Archive are consist of 1 or 2 terms. Mean average precision
yields the highest percentage at n=3 since many unigram, bigram,
and trigram terms improves rellevant Java Archive ranking
position.

TABLE V. INFLUENCE OF INITIAL N-GRAM

n Efficiency Effectiveness
Index size Average

indexing
time

Mean
average
query

latency

Mean
average

precision

Recall

2 424.6 % 2.632 % 603.3 % 6.798 % 1.831 %

3 953.2 % 5.895 % 1396.6 % 7.224 % 1.831 %

4 1419.2 % 9.252 % 2069.1 % 7.118 % 1.831 %

5 1825.4 % 9.497 % 2522.5 % 6.995 % 1.831 %

Based on evaluation conducted in this research, efficiency are
mostly depends on how many terms stored on index Indexing
time is not only affected by how many index terms but also how
many process used at indexing step. Mean average precision and

recall may be vary based on terms stored on index whereas mean
average precision is also affected by term weight. Features that
enhance its effectiveness are also combined and compared with
FindJar main features reimplementation. It yields greater
effectiveness (MAP : 69.282 %, recall : 94.369 %) than FindJar
main features reimplementation (MAP : 54.626 %, recall : 60.875
%). The combined features are file name, class name, method
content, program flow weighting with loop constant 1, and n=3
as its initial n-gram value. Its mean average precision is still low
since Java Archives are mostly composed of common terms.

V. CONCLUSION
In this research, a Java Archive search engine that uses

bytecode as its information source has been developed. It enables
user to search within a collection of Java Archives without
relying with source code and external documentation. Based on
evaluation result, detailed byte code features have positive
influences in search engine for Java Archives. File name, class
name, method content, program control flow weighting with loop
constant 1, and n=3 as initial n-gram value yields greater
effectiveness than FindJar main feature reimplementation. Its
mean average precision is still low since many Java Archives
mostly consists of common terms whereas its recall is
considerably high since many queries consist of index terms.

Efficiency depends on how many terms stored on index and
how many process used at certain step. Recall depends on the
number of Java Archive significant terms which are stored on
index. Mean average precision is affected based on index terms
and its weight. File name, class name, method content, and
program control flow weighting enhance mean average precision
although method name, field name, and method expansion are
lowering it. Loop constant yields the best mean average precision
at 1 where greater value will lower its mean average precision.
Initial n-gram value yields the best effectiveness at 3. Its
effectiveness will be reduced if it is reduced or added from 3. The
highest effectiveness enhancement is gained through transition
between 1 to 2.

VI. FUTURE WORK
Certainly, this research has many aspects that needs

improvements which are :

1. Features are still considered equal in terms of weight
although some features may affect more than others.

2. Object oriented techniques such as overriding and
polymorphism are still not handled.

3. Programs used in this research are still limited to Java
archive which can be expanded to any other program
files.

4. Terms are stored in single index file without using any
compression method which is not scalable enough to
handle large dataset.

101

2014 International Conference on Data and Software Engineering

REFERENCES
[1] Maletic, J. L., & Valluri, N. (1999). Automatic Software Clustering via

Latent Semantic Analysis. Automated Software Engineering, 1999. 14th
IEEE International Conference (page 251 - 254). Cocoa Beach: IEEE.

[2] Penta, M. D., German, D. M., & Antoniol, G. (2010). Identifying Licensing
of Jar Archives using a Code-Search Approach. Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference (page 151 - 160).
Cape Town: IEEE.

[3] Gosling, J., Joy, B., Steele, G., & Bracha, G. (2005). Java Language
Spesification Third Edition. California: Sun Microsystems, Inc.

[4] Marcus, A., Sergejev, A., Rajlich, V., & Maletic, J. L. (2004). An
Information Retrieval Approach to Concept Location in Source Code.
Reverse Engineering, 2004. 11th Working Conference (page 214 - 223).
Delft: IEEE.

[5] Kuhn, A., Ducasse, S., & Girba, T. (2005). Enriching Reverse Engineering
with Semantic Clustering. Reverse Engineering, 12th Working Conference
(page 1095-1350). Pittsburgh: IEEE.

[6] Kuhn, A., Duccase, S., & Girba, T. (2007). Semantic Clustering:
Identifying Topics in Source Code. Information and Software Technology
Volume 49 Issue 3 , 230–243.

[7] FindJar. (2008). Retrieved December 12, 2013, from Jar Search -
FindJar.com: http://findjar.com/index.x

[8] Ohloh. (2013). Retrieved December 22, 2013, from Ohloh Code Search:
http://code.ohloh.net/

[9] Gosling, J., Joy, B., Steele, G., & Bracha, G. (2005). Java Language
Spesification Third Edition. California: Sun Microsystems, Inc.

[10] Miecznikowski, J. (2003). New Algorithms for a Java Decompiler and
Their Implementation in Soot. Montreal: Master Thesis, Computer Science,
McGill University.

102

2014 International Conference on Data and Software Engineering

