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Abstract—Information from computer programs can be extracted 
from its source code, external documentation, and compiled code. 
Although compiled code is an assured information source which is 
always exists in published computer programs, it is seldom used by 
the existing search engines since some reverse engineering tasks are 
needed. In this research, a search engine for Java archives that uses 
byte code (compiled code for Java Archive) as its information 
source is developed. It enables user to search within a collection of 
Java Archives without relying with source code and external 
documentation. Compared with Penta and FindJar [2][7], A novel 
term extraction process beyond the file and class name is proposed, 
which includes field name, method name, string literal used in 
program, program flow weighting, and method expansion. 
Exclusive tokenization, stopping, and stemming are also 
implemented to improve effectiveness. Based on evaluation, it has a 
fairly good effectiveness although it may vary based on terms 
stored on index. Its effectiveness is higher than FindJar main 
features reimplementation which indicates that detailed compiled 
code has positive influences in computer programs search engine. 
Efficiency depends on how many terms stored on index and how 
many process used at certain step.  

Keywords—search engine; Java archive; information extraction; 
compiled code;  byte code 

I.  INTRODUCTION 
Computer programs could have many variations, such as 

executable files, libraries, or source codes. Information from 
computer program can be extracted from its source code [1], 
external documentation [1], and compiled code [2]. Compiled 
code is the most reliable feature since it always exist in published 
computer programs. Although the fact that it is the most reliable 
feature, it is seldom used since some reverse engineering tasks 
are needed on its information extraction step. Some existing 
search engine have applied compiled code as its information 
source but only limited to file name because of its simple 
extraction mechanism.  

 Without source code and external documentation, file name 
is not good enough to represent computer program as document 
in search engine since many file name contains product name and 
do not describe its functionality. This problem can be solved by 

extracting detailed compiled code features from a computer 
program and implementing exclusive tokenization, stopping, and 
stemming on its terms. 

In this research, a search engine for computer programs that 
uses compiled code as its information source is proposed. 
Computer program used in this research is Java archive where 
each archive is treated as a document and each class included on 
it are treated as a part of document. Compiled code used in Java 
archive is called byte code which is parsed based on Java SE 7 
specification and Java virtual machine compiler [3].  

II. RELATED WORK 
Information extraction of computer programs that is based on 

its source code [1], external documentation [1], and compiled 
code [2] has been applied in many researches. Information 
extraction based on source code is implemented by Maletic, 
Marcus, Kuhn, and Ohloh Code whereas external documentation 
is implemented by Maletic and Ohloh Code [1][4][5][6][7]. 
Maletic and Kuhn use source code comments and identifiers in 
their research. Maletic uses it to categorize software components 
automatically whereas Kuhn uses it to enrich information on 
reverse engineering process and source code topic identification 
[1][5][6]. Maletic, Kuhn, and Ohloh Code use source code as 
documents to search some source code fragments with 
information retrieval approach [4][7]. External documentation is 
also used by Maletic and Ohloh Code to improve its 
effectiveness. Although compiled code is seldom used, it also has 
been applied in some researches. Penta use file name and textual 
files in Java Archive to identify its licenses [2]. FindJar use file 
name as information source on Java Archive search engine [7]. 

Information source is a crucial task in search engine’s 
indexing process since it determines all terms stored in index. 
Search engines for computer programs have been developed in 
some researches which some of them are Ohloh Code and 
FindJar. Ohloh Code uses source codes as search engine’s 
documents whereas FindJar uses file name as its index terms 
[7][8].  

978-1-4799-7996-7/14/$31.00 ©2014 IEEE
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In this research, a search engine for computer programs that 
extract information based on compiled code is developed by 
expanding FindJar main features. Many detailed compiled code 
features like class name, field name, method name, and string 
literals used in programs are applied. It also uses exclusive 
tokenization, stopping, stemming, n-grams concatenation, 
program flow weighting, and method expansion mechanism to 
improve its efficiency. This research focuses on compiled code as 
information source because of its exact whereabouts and limited 
to Java Archive as its documents.  

III. ANALYSIS AND DESIGN 
The search engine applies vector space model with cosine 

correlation as its retrieval model and tf-idf weighting as its term 
weighting mechanism. Terms are taken by extracting file name, 
class name (including package name), method name, field name, 
and string literals from class file(s) on Java Archive. These 
textual informations are treated as string literals which are 
converted to terms by tokenizing, stopping, and stemming. 
Tokenization is applied in exclusive way because identifiers must 
be considered as set of terms. It is divided to three step which 
are: 

a. Word tokenization, Input string are split using invalid 
identifier character as its separator.  

b. Identifier tokenization, Terms which length is higher 
than 1 are split using Java naming rules and converted 
to lowercase format.  

c. Term Concatenation, Terms are concatenated in n-gram 
format. This step is also repeated with lower positive n 
values. Concatenated terms which length is lower than 2 
are ignored.  

Stop words are classified to five category that are  
programming language keywords (Java and object oriented 
language), Java literals, developer terms, client terms, and 
English stop words. After stopping, each term are stemmed with 
Porter stemmer.  

The example of term conversion for input string “Java 
ASTTree1988” with n = 2 can be seen in Figure 1. Input string is 
separated using invalid identifier character to “Java” and 
“ASTTree1988”. Each term are split using Java naming rules and 
converted to lowercase format which produces “Java”, “ast”, 
“tree”, and “1988” as terms. These terms are concatenated with n 
= 2 which produces unigram and bigram format (because it is 
repeated until n = 0). This step produces “Java”, “ast”, “tree”, 
“1988”, “Javaast”, “asttree”, and “tree1988” as terms. Each term 
that is not classified as stop words are stemmed using Porter 
stemmer (term “Java” is classified as stop word). So in this case, 
input string “Java ASTTree1988” are converted to “ast”, “tree”, 
“1988”, “Javaast”, “asttre”, and “tree1988”. 

String literals from class files on Java Archive are extracted 
by reverse engineering string and method invocation on its byte 
code. Each method invocation are replaced by its invoked 

method content where each non-recursive method are expanded 
till no method invocation exist. This mechanism are used to 
minimalize the effect of instructions encapsulation variants (e.g. 
function and procedure encapsulation). The example of method 
expansion can be seen in Figure 2 and Figure 3. Figure 2 
represents method content before expansion where Figure 3 
represents method content after expansion. In this example, 
method B invocation at instruction 4 in method A are replaced by 
the content of method B.  

 
Figure 1.  The example of term conversion with n = 2 

 
Figure 2.  Method A and B before expansion 

Recursive methods are expanded by limiting its expansion at 
a certain numeric value. They are detected by selecting all 
strongly connected components from method relation graph. 

Method A 
  1. Instruction 1 
  2. Instruction 2 
  3. String “precision” invocation 
  4. Method B invocation 
  5. Instruction 3 
  6. String “accuracy” invocation 

 
Method B 
  1. Instruction 1 
  2. String “search” invocation 
  3. Instruction 2 
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Method relation graph is built by treating each method as a node 
where each method B invocation in method A is converted to an 
edge that points from node A to B. The example of a method 
relation graph can be seen in Figure 5 which is generated based 
on Figure 4. In this example, each method are converted to nodes 
where each method invocation are converted to edges (e.g. edge 
from A to B are built based on method invocation B in method 
A). Non-recursive methods are strongly connected components 
that has only one node without an edge that point itself. Strongly 
connected components are marked by rectangle in Figure 5. 

 
Figure 3.  Method A and B after expansion 

 
Figure 4.  Sample methods for method graph relation example 

 
Figure 5.  Method graph based on sample methods 

String literals are taken from string invocation in each 
expanded methods and weighted based on how high its 
probability to be invoked when program runs. The probability is 
calculated based on program control flow such as looping, 
branching, and exception. Before weighting, program control 
flow is converted to graph where each goto represents an edge 
and each source or target instruction represents a node 
(Exceptions are also remodeled as branching and embedded in 
the graph). The probability of each node and edge is calculated as 
follows : 

a. The first node’s probability is 1 since it is always be 
invoked when program runs. 

b. For each edge, its probability is calculated by dividing 
its source node’s probability with the number of edges 
that is sourced from it. 

c. For each node, its probability is calculated by sum up all 
the weight of edges that target itself (except back 
edges). 

The example of calculating node and edge probability can be 
seen in Figure 6. Node’s probability are summed from the weight 
of all non-back edges that point itself (0.25+0.25+0.25=0.75) 
whereas each edge’s probability are source node’s probability 
divided by the number of edges that is sourced from it (0.75 / 3 = 
0.25). 

 
Figure 6.  The example of branch weighting 

Loops are detected by adopting Miecznikowski’s algorithm 
which recognizes loop as while loop, do-while loop, and 
unconditional loop (Miecznikowski’s algorithm can be seen in 
[10]). Nested loops are detected by removing some conditional 
nodes whereas string literals are affected by multiplying its 
probability with the number of loops. To avoid zero probability 
problem on multiplication step, the number of loops is always 
added by 1. 

After method expansion and program control flow weighting, 
weight of string literal is weighted by tf-idf weighting and treated 
as term weight. Each term and its weight are stored in serialized 
index which is used as data source on its retrieval step. Retrieval 
step are conducted by tokenizing, stopping, and stemming input 
query and retrieve all relevant Java Archives based on input 
query terms. 

 

Method A 
  1. Method B invocation 
  2. Instruction 1 
 
Method B 
  1. Instruction 1 
  2. Method A invocation 
  3. Method C invocation 
 
Method C 
  1. Instruction 1 
 
Method D 
  1. Method A invocation 
 
Method E 
  1. Method E invocation 

Method A 
  1. Instruction 1 
  2. Instruction 2 
  3. String “precision” invocation 
  4.1. Instruction 1 
  4.2. String “search” invocation 
  4.3. Instruction 2 
  5. Instruction 3 
  6. String “accuracy” invocation 
 
Method B 
  1. Instruction 1 
  2. String “search” invocation 
  3. Instruction 2 
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IV. EVALUATION AND RESULT 
The search engine developed in this research is evaluated by 

measuring two main factors which are efficiency and 
effectiveness. Efficiency is measured based on index size, 
average indexing time, and mean average query latency whereas 
effectiveness is measured using mean average precision (MAP) 
and recall. Dataset used in this evaluation are FindJar’s sub-
dataset which queries are determined from manual judgement 
based on its description. Dataset are taken manually since FindJar 
did not provide API to retrieve all data on its dataset at once. The 
statistics of dataset used in this research can be seen in Table I. 

TABLE I.  DATASET STATISTICS 

Statistic Variable Values 
Number of Java archives in 
dataset 552 Java archives 

Number of queries in dataset 1860 queries 

Number of manual judge 8 judge 

Shortest query DJ 

Longest query org.apache.sling.jcr.jackrabbit.userm
anager-2.0.2-incubator 

Average number of characters in 
queries 17.332 characters 

Average number of words in 
queries 1.161 words 

Query with the highest number of 
relevant java archives  

Spring 
(21 Java archives) 

Average number of relevant Java 
archive for each query 2.298 Java archives 

The largest Java archive size in 
dataset 7580792 bytes 

The smallest Java archive size in 
dataset 1764 bytes 

Dataset size 146 megabytes 
 

In this research, Influence of each feature is measured in term 
of its efficiency and effectiveness which can be seen in Table II. 
They are measured in percentage unit which is obtained by 
comparing cases where the selected feature exists or absences 
(percentage value is based on case where the selected feature 
absences). Evaluation are conducted in Windows 7 Ultimate 32-
bit with 4.00 GB RAM, and Intel(IR) Core(TM) i7-3770 CPU @ 
3.40 GHz 3.90 GHz as its processor. 

Method content is the most influential feature in term of 
efficiency. It greatly affects index size and mean average query 
latency since many string literals used in program are contained 
on it. Average indexing time is also greatly affected because 
many process needed on its extraction step. Method expansion 
and program flow weighting do not affect index size because 
they only modify the weight of each index terms.  

File name is the most influential feature in term of recall since 
most users know which Java Archive they are looking for. Java 
Archive is usually named as its product name which is frequently 
used as a query. It ensures the selected Java Archive to be 

retrieved although in low position. File name does not affects 
mean average precision greatly since some product name consists 
of common terms which make it more difficult to be put in high 
position. Class name greatly affects mean average precision since 
many of them are used in the queries and are adequately 
represent Java Archive’s functionality.  

TABLE II.  INFLUENCE OF FEATURES 

Features Efficiency Effectiveness 
Index size Average 

indexing 
time 

Mean 
average 
query 
latency 

Mean 
average 
precision 

Recall 

File name 0.151 % 0.253 % 1.046 % 3.428 % 4,939 % 

Class name 3.026 % 0.311 % 16.105 % 12.052 % 1.579 % 

Field name 12.902 % 1.336 % 24.806 % - 0.484 % 0.115 % 

Method 
name 

11.782 % 0.228 % 21.969 % - 0.866 % 0.346 % 

Method 
content 

56.959 % 729.01 % 99.586 % 0.573 % 2.425 % 

Method 
expansion 

0 % 83.858 % 5.228 % - 0.027 % 0 % 

Program 
control 
flow 
weighting 

0% 1.077 % 4.772 % 1.205 % 0 % 

 

Some features negatively affect mean average precision since 
they contain a lot of common terms which are not explicitly 
related with its Java Archive (e.g. method name may contains 
some common terms like “build” and “close”). Method 
expansion and program control flow weighting do not affect 
recall since it only modify index term’s weight. 

Recursive methods are expanded by limiting its expansion at 
a certain numeric value which is also evaluated in this research. 
Influence of each recursive method expansion constant can be 
seen in Table III. They are measured by comparing it with default 
case (constant value 0).  

TABLE III.  INFLUENCE OF RECURSIVE METHOD EXPANSION CONSTANT 

Recursive 
method 

expansion 
constant 

Efficiency Effectiveness 
Index size Average 

indexing 
time 

Mean 
average 
query 

latency 

Mean 
average 

precision 

Recall 

1 0 % 0. 378 % 0.207 % -0.027 % 0 % 

2 0 % 6.992 % - 0.207 % -0.028 % 0 % 

3 0 % 10.404 % 0.414 % -0.047 % 0 % 

 

Changes in the value of recursive method expansion constant 
do not have much impact on index size, mean average query 
latency, and recall since it only modify index term’s weight. 
Indexing time is proportionally increased to recursive method 
expansion constant since expanding recursive method takes a 
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considerable amount of process. Mean average precision is 
inversely proportional to recursive method expansion constant 
since some terms in recursive method are not explicitly related 
with its Java Archive. 

Loops that are detected in this research are considered as 
constant loops by multiplying its amount with an integer value 
called loop constant. The influence of loop constant can be seen 
in Table IV which is compared with loop constant 1 as its default 
case. Loop constant does not greatly affect its efficiency since it 
only adds multiplication process on extraction step. Some terms 
in loops are not explicitly relevant to its Java archive, so the 
greater loop constant will lower its mean average precision. 

TABLE IV.  INFLUENCE OF LOOP CONSTANT 

Loop 
constant 

Efficiency Effectiveness 
Index size Average 

indexing 
time 

Mean 
average 
query 

latency 

Mean 
average 

precision 

Recall 

2 0 % 0.441 % 0.207 % - 0.116 % 0 % 

3 0 % 0.765 % 0 % - 0.288 % 0 % 

4 0 % 0.683 % 0.207 % - 0.372 % 0 % 

5 0 % 0.566 % 0.207 % - 0.714 % 0 % 

 

Tokenization step concatenates result token in n-gram format 
which initial n values may be vary and also evaluated in this 
research. The influence of initial n-gram can be seen in Table V 
which result is compared with unigram case (n=1). Index size, 
average indexing time, and mean average query latency are 
getting larger as n value grows because index terms are also 
increasingly varied. Based on dataset, recall is only improved as 
n go up from 1 to 2 which means significant terms in Java 
Archive are consist of 1 or 2 terms. Mean average precision 
yields the highest percentage at n=3 since many unigram, bigram, 
and trigram terms improves rellevant Java Archive ranking 
position.  

TABLE V.  INFLUENCE OF INITIAL N-GRAM 

n Efficiency Effectiveness 
Index size Average 

indexing 
time 

Mean 
average 
query 

latency 

Mean 
average 

precision 

Recall 

2 424.6 % 2.632 % 603.3 % 6.798 % 1.831 % 

3 953.2 % 5.895 % 1396.6 % 7.224 % 1.831 % 

4 1419.2 % 9.252 % 2069.1 % 7.118 % 1.831 % 

5 1825.4 % 9.497 % 2522.5 % 6.995 % 1.831 % 

 

Based on evaluation conducted in this research, efficiency are 
mostly depends on how many terms stored on index Indexing 
time is not only affected by how many index terms but also how 
many process used at indexing step. Mean average precision and 

recall may be vary based on terms stored on index whereas mean 
average precision is also affected by term weight. Features that 
enhance its effectiveness are also combined and compared with 
FindJar main features reimplementation. It yields greater 
effectiveness (MAP : 69.282 %, recall : 94.369 %) than FindJar 
main features reimplementation (MAP : 54.626 %, recall : 60.875 
%).  The combined features are file name, class name, method 
content, program flow weighting with loop constant 1, and n=3 
as its initial n-gram value. Its mean average precision is still low 
since Java Archives are mostly composed of common terms. 

V. CONCLUSION 
In this research, a Java Archive search engine that uses 

bytecode as its information source has been developed. It enables 
user to search within a collection of Java Archives without 
relying with source code and external documentation. Based on 
evaluation result, detailed byte code features have positive 
influences in search engine for Java Archives. File name, class 
name, method content, program control flow weighting with loop 
constant 1, and n=3 as initial n-gram value yields greater 
effectiveness than FindJar main feature reimplementation. Its 
mean average precision is still low since many Java Archives 
mostly consists of common terms whereas its recall is 
considerably high since many queries consist of index terms. 

Efficiency depends on how many terms stored on index and 
how many process used at certain step. Recall depends on the 
number of Java Archive significant terms which are stored on 
index. Mean average precision is affected based on index terms 
and its weight. File name, class name, method content, and 
program control flow weighting enhance mean average precision 
although method name, field name, and method expansion are 
lowering it. Loop constant yields the best mean average precision 
at 1 where greater value will lower its mean average precision. 
Initial n-gram value yields the best effectiveness at 3. Its 
effectiveness will be reduced if it is reduced or added from 3. The 
highest effectiveness enhancement is gained through transition 
between 1 to 2.  

VI. FUTURE WORK 
Certainly, this research has many aspects that needs 

improvements which are : 

1. Features are still considered equal in terms of weight 
although some features may affect more than others. 

2. Object oriented techniques such as overriding and 
polymorphism are still not handled. 

3. Programs used in this research are still limited to Java 
archive which can be expanded to any other program 
files. 

4. Terms are stored in single index file without using any 
compression method which is not scalable enough to 
handle large dataset. 
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