ANALISIS DAYA DUKUNG AXIAL DAN DAYA DUKUNG LATERAL PADA PONDASI TIANG DI PELABUHAN MERAK, BANTEN

Daniel Setiawan NRP: 1221905

Pembimbing: Ir. Asriwiyanti Desiani, MT.

ABSTRAK

Indonesia merupakan Negara yang terdiri dari banyak pulau sehingga memiliki garis pantai yang sangat panjang. Seiring dengan bertambahnya penduduk semakin banyak pula kebutuhan akan transportasi yang menghubungkan antar pulau, untuk itu perlu dibangun pelabuhan. Struktur yang terdapat di pelabuhan sangat bervariasi, daiantaranya dermaga, *jetty*, gedung administrasi, dan lain-lain. Tinjauan pada Tugas Akhir ini di khususkan untuk struktur dermaga yang menumpu pada pondasi dalam, dapat berupa tiang pancang dan tiang bor.

Penelitian ini dimaksudkan untuk mencari nilai daya dukung dan defleksi yang terjadi akibat beban axial berupa beban truk, dan beban mati dari *pile cap* serta beban lateral yang berupa beban gelombang, dan beban berlabuh kapal (berthing) pada tiang pancang dan tiang bor. Tiang pancang dan tiang bor yang akan dianalisis mempunyai diameter 400 mm, 450 mm, 500 mm, 600 mm, dan 800 mm dan tiang bor yang memiliki diameter 600 mm, 800 mm, 1000 mm, dan 1200 mm. Analisis daya dukung menggunakan *software Allpile*.

Dari hasil analisis dengan software *Allpile* bisa didapatkan bahwa semakin besar diameter yang dipakai akan semakin besar pula daya dukung axial yang terjadi, dan semakin besar diameter yang dipakai akan semakin kecil pula penurunan yang terjadi. Untuk analisis lateral bisa didapatkan bahwa besarnya diameter mempengaruhi besarnya defleksi yang terjadi, defleksi akan semakin kecil apabila diameter tiang diperbesar.

Tiang pancang dengan diameter 400mm, 450mm, 500mm, 600mm, 800mm, dengan panjang 16,5 m dan berhenti di kedalaman 6 m dari muka tanah tidak dapat menahan beban lateral yang terjadi sehingga diganti menjadi tiang bor. Untuk tiang bor dengan diameter 600mm, 800mm, 1000mm,dan 1200mm dengan panjang 20 m mampu menahan gaya axial dan mampu menahan gaya lateral dan hanya tiang bor dengan diameter 1200mm yang mampu memenuhi syarat maksimum defleksi yaitu sebesar 2,5 cm.

Kata kunci: Allpile, daya dukung axial, penurunan, defleksi

ANALYSIS OF LATERAL BEARING CAPACITY AND AXIAL BEARING CAPACITY PILE FOUNDATION IN MERAK PORT, BANTEN

Daniel Setiawan NRP: 1221905

Adviser: Ir. Asriwiyanti Desiani, MT.

ABSTRACT

Indonesia is a country consisting of many islands that has a very long coastline. Along with the increase of population the more the need for transport links between the island, for it is necessary to build the port. The structure contained in the harbor is very varied, daiantaranya pier, jetty, administration building, and others. Overview on this final project devoted to the dock structure rested on the foundation, the foundation can be driving pile or drilling pile.

This research intended to find the value of bearing capacity and deflection caused by the axial load from a truck load and dead load of the pile cap and the lateral load from wave loads , and berthing load from ship on driving pile and drilling pile. Driving pile to be analyzed has a diameter of 400 mm , 450 mm , 500 mm , and 800 mm and drilling pile which has a diameter of 600 mm , 800 mm , 1000 mm and 1200 mm . Bearing capacity analysis using software Allpile.

From the analysis with Allpile software can be obtained that the larger the diameter of which used the greater the axial bearing capacity that occurs, and the larger diameter will use the less the settlement. For lateral analysis can be found that the size of the diameter influences the value of deflection that occurs, the deflection will be smaller if the diameter of the pile is enlarged.

Piles with a diameter of 400mm, 450mm, 500mm, 600mm, 800mm, with a length of 16.5 m and a stop at a depth of 6 m from ground elevation can not resist lateral loads that occur from the lateral load. The bored piles with diameters of 600mm, 800mm, 1000mm, 1200mm, 1400mm, 1600mm, 1800mm, and 2000mm able to withstand the axial force and able to withstand lateral forces and only bored pile with diameter 2000mm able to fulfill the requirement that the maximum deflection of 2,5 cm.

Key word: Allpile, axial bearing capacity, settlement, deflection

DAFTAR ISI

HALA	MAN JUI	DUL	i
LEMB	AR PENC	GESAHAN	ii
PERN	YATAAN	ORISINALITAS LAPORAN PENELITIAN	iii
PERN	YATAAN	PUBLIKASI LAPORAN PENELITIAN	iv
SURA	T KETER	ANGAN TUGAS AKHIR	96
SURA	T KETER	ANGAN SELESAI TUGAS AKHIR	97
KATA	PENGA	NTAR	v
ABSTI	RAK		vii
ABSTR	ACT		viii
DAFT	AR ISI		ix
DAFT	AR GAM	BAR	xii
DAFT	AR TABE	EL	XV
DAFT	AR LAMI	PIRAN	xvi
DAFT	AR NOTA	ASI	xvii
BAB I			1
1.1	Latar Be	elakang	1
1.2	Tujuan I	Penelitian	2
1.3	Ruang L	Lingkup Penelitian	2
1.4	Metodol	logi Penelitian	3
1.5	Sistemat	tika Penulisan	3
BAB II	[4
2.1	Penyelic	dikan Tanah Uji Penetrasi Standar (SPT)	4
2.2	Paramet	er Tanah	6
2.3	Pondasi	Dalam	7
2	.3.1 Por	ndasi Tiang Pancang	9
	2.3.1.1	Tiang Pancang Kayu	10
	2.3.1.2	Tiang Pancang Beton	11
	2.3.1.3	Tiang Pancang Baja	14
	2.3.1.4	Tiang Pancang Komposit	15

2	.3.2 Ala	t Pancang Tiang	19
	2.3.2.1	Pemukul Jatuh (drop hammer)	20
	2.3.2.2	Pemukul Aksi Tiang (single-acting hammer)	20
	2.3.2.3	Pemukul Diesel (diesel hammer)	20
	2.3.2.4	Pemukul Aksi Double (double-acting hammer)	21
	2.3.2.5	Pemukul Getar (vibratory hammer)	21
2	.3.3 Me	tode Pelaksanaan Tiang Pancang	21
	2.3.3.1	Pekerjaan Persiapan	22
	2.3.3.2	Proses Pengangkatan	23
	2.3.3.3	Proses Pemancangan	24
	2.3.3.4	Quality control	25
2	.3.4 Kri	teria dan Jenis Pemakaian Tiang Pancang	26
2	.3.5 Pon	idasi Tiang Bor	26
2.4	Kapasita	s Daya Dukung Pondasi Dalam	28
2	.4.1 Day	ya Dukung Tiang Axial Berdasarkan Data N-SPT	29
2	.4.2 Day	ya Dukung Lateral	33
	2.4.2.1	Analisis Tiang pada Tanah non Kohesif	33
2.5	Pembeba	anan Tiang	38
2	.5.1 Beb	oan Axial	38
	2.5.1.1	Beban mati	38
	2.5.1.2	Beban hidup	39
2	.5.2 Bet	oan Lateral	40
	2.5.2.1	Gaya Benturan Kapal	40
	2.5.2.2	Beban Gelombang	42
2.6	Dermaga	3	44
2	.6.1 Pen	nilihan Tipe Dermaga	45
	2.6.1.1	Tinjauan Topografi daerah pantai	45
	2.6.1.2	Jenis Kapal yang dilayani	45
	2.6.1.3	Jenis Dermaga	46
BAB II	II		49
3.1	Diagram	Alir Penelitian	49
3.2	Data Tar	nah	50

3.3 Dat	a Tiang	. 52
3.4 Dat	a Beban Lateral	. 52
3.4.1	Data Gelombang	. 52
3.4.2	Data Kapal dan Perhitungan Beban Berthing (Berlabuh Kapal)	. 56
3.5 Dat	a Beban Axial	. 59
3.5.1	Beban Mati Pile cap	. 59
3.5.2	Beban Truk	. 59
3.6 Me	tode Analisis Menggunakan Allpile	. 60
BAB IV		66
4.1 Per	nodelan pada Allpile	. 66
4.1.1	Analisis Pondasi Tiang Pancang	. 66
4.1.2	Analisis Pondasi Tiang Bor	. 70
4.2 Has	sil Analisis	. 82
4.3 Ve1	ifikasi Dengan Perhitungan Manual	. 87
BAB V		91
5.1 Sin	npulan	. 91
5.2 Sar	an	. 91
DAFTAR P	USTAKA	92

DAFTAR GAMBAR

Gambar 2 .1 Split Spoon Sample untuk pengujian SPT5
Gambar 2.2 Pengujian SPT di lapangan6
Gambar 2.3 Tiang pancang beton precast concrete pile (Bowles, 1991)12
Gambar 2.4 Tiang pancang Precast Prestressed Concrete Pile (Bowles, 1991)13 $$
Gambar 2.5 Skema pemukul tiang : (a) Pemukul aksi tunggal (single acting
hammer), (b) Pemukul diesel (diesel hammer) (c) pemukul aksi double (double
acting hammer), (d) Pemukul getar (vibratory hammer)20
Gambar 2.6 Pengangkatan Tiang Dengan Dua Tumpuan
Gambar 2.7 Pengangkatan Tiang Dengan Satu Tumpuan
Gambar 2.8 Urutan Pemancangan: (a) Pemancangan Tiang, (b) Penyambungan
Tiang, (c) Kalendering/Final Set
Gambar 2.9 Tahanan ujung pada tanah non kohesif (Reese & Wright, 1977)31
Gambar 2.10 Tahanan Selimut vs NSPT (Wright 1977)
Gambar 2.11 Skema keruntuhan tiang pendek pada tanah non kohesif
Gambar 2.12 Skema keruntuhan tiang panjang bebas pada tanah non kohesif35
Gambar 2.13 Skema keruntuhan tiang pendek ujung jepit pada tanah non kohesif
35
Gambar 2.14 Skema keruntuhan tiang panjang ujung jepit pada tanah non kohesif
36
Gambar 2.15 Kurva Untuk Menghitung Defleksi Lateral Pada Permukaan
Berdasarkan Beban Horizontal Tiang Pada Tanah Kohesif (Broms, 1964a)37
Gambar 2.16 Kurva Untuk Menghitung Defleksi Lateral Pada Permukaan
Berdasarkan Beban Horizontal Tiang Pada Tanah Non-Kohesif (Broms, 1964a) 38
Gambar 2.17 Pembebanan Truk "T"
Gambar 2.18 Pemakaian Fender
Gambar 2.19 Pelabuhan barang potongan (general cargo)
Gambar 2.20 Pelabuhan barang peti kemas
Gambar 2.21 Pelabuhan barang curah 48

Gambar 3.1 Diagram Alir Penelitian	49
Gambar 3.2 Interpretasi Lapisan Tanah Hasil BL-03	51
Gambar 3.3 Pembebanan Truk	60
Gambar 3.4 Tampilan awal program Allpile	60
Gambar 3.5 Pile Type	61
Gambar 3.6 Pile Profile	61
Gambar 3.7 Pile Properties	62
Gambar 3.8 Menentukan Data Tiang	62
Gambar 3.9 Load and Group	63
Gambar 3.10 Soil Properties	63
Gambar 3.11 Soil Data Input	64
Gambar 3.12 Advanced Page	64
Gambar 3.13 Vertical Analysis	65
Gambar 3.14 Lateral Analysis	65
Gambar 4.1 Dimensi Tiang Pancang	67
Gambar 4.2 Vertical Analysis Program Allpile Untuk Tiang Pancang D=800m	ım
	68
Gambar 4.3 Penurunan Yang Terjadi Pada Tiang Pancang Diameter 800 mm	68
Gambar 4.4 Lateral Analysis Program Allpile Untuk Tiang Pancang D=800m	ım
	69
Gambar 4.5 Defleksi Yang Terjadi Pada Tiang Pancang D=800mm	69
Gambar 4.6 Dimensi Tiang Bor 600 mm.	70
Gambar 4.7 Vertical Analysis Program Allpile Untuk Tiang Bor D=600 mm	71
Gambar 4.8 Penurunan Yang Terjadi Pada Tiang Bor D=600 mm	71
Gambar 4.9 Lateral Analysis Program Allpile Untuk Tiang Bor D=600 mm	72
Gambar 4.10 Defleksi Yang Terjadi Pada Tiang Bor D=600mm	72
Gambar 4.11 Dimensi Tiang Bor 800 mm.	73
Gambar 4.12 Vertical Analysis Program Allpile Untuk Tiang Bor D=800 mm	74
Gambar 4.13 Penurunan Yang Terjadi Pada Tiang Bor D=800 mm	74
Gambar 4.14 Lateral Analysis Program Allpile Untuk Tiang Bor D=800 mm	75
Gambar 4.15 Defleksi Yang Terjadi Pada Tiang Bor D=800mm	75

Gambar 4.16 D	Dimensi Tiang Bor 1000 mm	76
Gambar 4.17 V	Vertical Analysis Program Allpile Untuk Tiang Bor D=1000 mm 7	77
Gambar 4.18 P	enurunan Yang Terjadi Pada Tiang Bor D=1000 mm	77
Gambar 4.19 V	Vertical Analysis Program Allpile Untuk Tiang Bor D=1000 mm 7	78
Gambar 4.20 E	Defleksi Yang Terjadi Pada Tiang Bor D=1000mm	78
Gambar 4.21 E	Dimensi Tiang Bor 1200 mm	79
Gambar 4.22 V	Vertical Analysis Program Allpile Untuk Tiang Bor D=1200 mm 8	30
Gambar 4.23 P	enurunan Yang Terjadi Pada Tiang Bor D=1200 mm	30
Gambar 4.24 L	ateral Analysis Program Allpile Untuk Tiang Bor D=1200 mm8	31
Gambar 4.25 D	Defleksi Yang Terjadi Pada Tiang Bor D=1200mm	31
Gambar 4.26 C	Grafik Diameter Tiang vs Penurunan	32
Gambar 4.27 C	Grafik Diameter Tiang vs Daya Dukung dan Beban Axial	33
Gambar 4.28 C	Grafik Beban Lateral vs Defleksi	34
Gambar 4.29 C	Grafik Diameter vs Daya Dukung Ijin dan Beban Axial	35
Gambar 4.30 C	Grafik Diameter vs Penurunan	36
Gambar 4.31 C	Grafik Diameter vs Defleksi	37
Gambar 4.32 K	Sapasitas lateral ultimit untuk tiang panjang pada tanah	39

DAFTAR TABEL

Tabel 2.1 Korelasi Parameter untuk Tanah Pasir	6
Tabel 2.2 Modulus of Subgrade Reaction (k) vs N-SPT untuk Tanah Pasir	7
Tabel 2.3 Nilai ηh untuk tanah non-kohesif	7
Tabel 3.1 Parameter Desain	50
Tabel 3.2 Data Tiang Pancang	52
Tabel 3.3 Tinggi Gelombang dan Periode Puncak pada Periode Ulang 2 T	ahun
dan 50 Tahun	53
Tabel 3.4 Data Beban Lateral Gelombang Pada Diameter yang Berbeda U	Jntuk
Periode Ulang 50 Tahun	56
Tabel 3.5 Data Kapal	57
Tabel 3. 6 Fender tipe AN Arch	58
Tabel 4.1 Data Tiang dan Data Beban	66
Tabel 4.2 Hasil Analisis Daya Dukung Axial Tiang Pancang	82
Tabel 4.3 Hasil Analisis Daya Dukung Lateral Tiang Pancang	84
Tabel 4.4 Hasil Analisis Daya Dukung Axial Tiang Bor	85
Tabel 4.5 Hasil Analisis Daya Dukung Lateral Tiang Bor	86
Tabel 4.6 Hasil Perhitungan Daya Dukung dengan Metode Reese & Wright	88

DAFTAR LAMPIRAN

L .1 Data Bor Log dan Data Tiang Pancang	93
L 2 Surat Keterangan Tugas Akhir	95

DAFTAR NOTASI

a_x percepatan partikel gelombang dalam arah horizontal,m/detik²

B Lebar kapal (m)

Cb Koefisien blok kapal

Cc Koefisien bentuk dari tambatan

C_D Koefisien Drag

Ce Koefisien eksentrisitas

C_M Koefisien Inersia
Cm Koefisien massa

Cs Koefisien kekerasan

Cu Kohesi tanah

D draft (m)

d Diameter tiang, mm

E Modulus Elastisitas Baja dan Beton, MPa

Ek Energi benturan / tumbukan kapal (t.m)

F Gaya gelombang lateral total (kN)

F_D Gaya gelombang drag (kN)F_I Gaya gelombang inersia (kN)

FK Faktor Keamanan

f Gesekan selimut pondasi tiang.

g Percepatan gravitasi = 9.81 m/det^2

γ Berat volume tanah

 γ ' Berat volume tanah efektif γ_{dry} Berat volume tanah kering

 γ_0 Berat jenis air laut = 10.3 kN/m³

 γ_{ssat} Berat volume jenuh γ_{w} Berat volume air

H Tinggi gelombang, m

Hall Beban horisontal ultimit (kN)

Hmax Beban horisontal maksimum (kN)

Hu Beban horisontal ultimit sebelum di bagi faktor keamanan (kN)

 $L \hspace{1cm} Panjang \hspace{1cm} kapal \hspace{1cm} (m)$ $L_{pp} \hspace{1cm} Panjang \hspace{1cm} garis \hspace{1cm} air \hspace{1cm} (m)$

Msf Multiplier safety factor

NSPT Nilai tumbukan pada pelaksanaan Standard Penetration Test, atau

disebut juga nilai SPT.

ω Frekuensi gelombang (Hz)

p Keliling

φ Sudut Geser Dalam

Qp Daya dukung ultimit ujung pondasi tiang
Qs Daya dukung ultimit selimut pondasi tiang

Qu Daya dukung ultimit pondasi tiang

q_c Tahanan Konus

ρ Berat jenis air laut = 1.025 ton/m³

T periode gelombang, detik

 u_x kecepatan partikel gelombang dalam arah-x, m/detik u_y kecepatan pertikel gelombang dalam arah-y, m/detik

V komponen tebak lurus sisi dermaga dari kecepatan pada saat

membentur dermaga (m/d)

W displacement kapal