16 November 2013

Seminar Nasional Teknologi Informasi

DAFTAR ISI

ata Sambutan Ketua Pelaksana

ata Sambutan Dekan Fakultas Teknologi Informasi

usunan Panitia

aftar Isi

A. ALGORITHM, INTELLIGENT SYSTEM, COMPUTATIONAL

41	Pengaruh Data Acak Pada Tingkat Kecocokan Konstruksi Struktur Bayesian Network Dengan Menggunakan Algoritma Hybrid	Ilham	1
42	Identifikasi DNA dengan Rantai Markov Orde Satu dan Probabilistic Neural Network	Toto Haryanto,	8
		Habib Rijzaani,	
		Muhammad Luthfi Fajar	
43	Penerapan Pembelajaran Terawasi Pada Algoritma Jaringan Syaraf Tiruan Hopfield Untuk Pemanggilan Ulang Pola Huruf Kapital	Sabam Parjuangan	14
44	Aplikasi Clustering Data Berukuran Besar dan Berdimensi Tinggi Berdasarkan Jarak	Edo Aria Putra Mawardi,	19
		Dyah Erny Herwindlati,	
		Herlina Abdullah	
15	Optimasi Model Pengontrol Ekson Berbasis HMM Dengan Preprocessing Data Menggunakan Fuzzy C Mean	Binti Solihah,	26
		Suhartati Agoes,	
		Alfred Pakpahan	
6	Identifikasi Pola Spasial Daerah Rawan Pangan Di Kabupaten Minahasa Tenggara Menggunakan Moran's I	Constantina A. Widi P	33
7	Kompresi Data Untuk Menghemat Bandwidth Dengan Menggunakan Algoritma Deflate	Angel Louren Paat,	42
		Eko Sediyono,	
		Adi Setiawan	
8	Rekayasa Sistem Antrian dengan Disiplin Non-Preemtive Priority Service untuk Peningkatan Pelayanan Pasien di Puskesmas Banguntapan II	Dison Librado,	47
		Cosmas Haryawan	
.9	Perancangan Penterjemah Bahasa Indonesia Ke Bahasa Daerah Dilengkapi Pemeriksaan Kalimat Ambigu	Dewi Soyusiawaty	54.
10	Penerapan Metode Eigen Window Untuk Pendeteksian Sel Darah Putih	Anthony Damenico,	62
		Lina,	
		Arlends Chris	

A11	Pemanfaatan E-Konseling Diagnosa Gangguan Psikologi Klinis	Masayu Jamilah,	68
		Wawan Nurmansyah	
A12	Pembangunan M-Konseling Psikologi Klinis	Rita Wiryasaputra,	74
		Rendra Gustriansyah,	
		Wawan Nurmansyah	
A13	Perancangan Program Edugame Mini Zoo Land Untuk Siswa Taman	Jeanny Pragantha,	79
	Kanak-Kanak	Helmy Thendean,	
		Sindy Kosasi	
В	INFORMATION SYSTEM		
B1	Pembelajaran Sistem Kolaboratif Online Berbasis Knowledge Construction	Puspa Setia Pratiwi	1
B2	Social Network Analysis: Collaborative Network Penyuluh Pertanian Dalam Mendukung Program Pengembangan Usaha Agribisnis Perdesaan	Bentar Priyopradono	10
B3	Data Warehouse Sebagai Basis Analisis Data Akademik Perguruan	Mewati Ayub,	18
	Tinggi	Tanti Kristanti,	
		Maresha Caroline	
84	Pemanfaatan Digital Technology Untuk Pembelajaran Matematika	Sugeng Astanggo,	26
	Anak Usia Sekolah Dasar Menggunakan Teori TAM dan Otomatisasi	Jap Tji Beng,	
		Sri Tlatri	
B5	Association Rules Untuk Mendukung Strategi Pelayanan Publik Dan	Zyad Rusdi,	32
	Sistem E-Gavernment	Dedi Trisnawarman	
B6	Data Mart Model For Human Resources Department (Recruitment Module)	Eka Miranda	37
B7	Perancangan E-Marketing Pada PT. Rajawali Nusindo	Zulflandri	45
		Bayu Waspodo,	
		Budi Wibowo,	
88	Model Decision Support System Penetapan Kontribusi Pendapatan Asli Daerah	Heru Soetanto Putra	51
B9	Perancangan Data Warehouse Pada Biro Travel PT. AKZ	Dewi Wuisan,	59
		Heru Soetanto Putra,	
	#6	Evaristus Didik Madyatmadja	
B10	Studi Kelayakan Sistem Informasi Bank ASI berbasis Syariah di Jakarta	Agung Sediyono,	64
		Binti Solihah	

11	Penerapan Framework Fast Pada Pengembangan Sistem Informasi Pola	Iwan Rijayana,	69
	Karir	Dodo Prawira Pradana	
12	Pengembangan Sistem Informasi Akademik dengan menggunakan Visualisasi Dashboard Sistem (SIAT)	Edi Setiawan	77
c.	NETWORK, DISTRIBUTED, INSTRUMENTATION		
1	Implementasi Microcontroller Sebagai Detektor Asap Rokok Sederhana	Syifaul Fuada,	1
		Citta Anindya,	
		Falshol Badar,	
		Dian Shofiyulloh	
2	Perancangan Alat Pemberi Makan Binatang Otomatis	Jimmy Agustian Loekito,	8
		Andrew Sebastian Lehman	
3	Pemodelan Helipad Menggunakan Microcontroller	Andrew Sebastian Lehman	13
4	Analisis Forensika Digital Pada Sony Playstation Portable Untuk Mendukung Pembuktian Pelanggaran Hak Cipta Pada Game Console	Yudi Prayudi ,	18
		Reza Febryan Alexandra	
5	Model Digital Forensic Readiness Index (DIFRI) Untuk Mengukur Tigkat Kesiapan Institusi Dalam Menanggulangi Aktifitas Cyber Crime	Tri Widodo ,	24
		Yudi Prayudi	
6	Anallsis Dan Perancangan Sistem Absensi Berbasis Global Positioning Sytem (GPS) Pada Android 4.x	Fransiskus Adikara	30
7	Sistem Monitoring Pengatur Intensitas Cahaya, Suhu Dan Kelembaban Ruangan Terintegrasi Berbasis Web Untuk Metode Manajemen Energi	Riki Ruli A Siregar,	37
		Delinawati Manurung	
8	Analisis Perbandingan Qos Wireless Router Asus WI-520gu, Tp Link Td-	Reqi Rangga Raditya,	45
	W8101g, Dan Linksys Wrt54gl Pada Streaming Video On Demand	Agung Sediyono	
9	Pemanfaatan Cloud Computing dalam Google Maps Untuk Pemetaan Informasi Alih Fungsi Lahan di Kabupaten M <mark>inahasa Tenggara</mark>	Leonardo Refialy,	52
		Eko Sediyono,	
		Adl Setiawan	
10	Sistem Pembelajaran Jarak Jauh Menggunakan FTP dan E-Learning	Korl Cahyono	59

Server

PEMODELAN HELIPAD MENGGUNAKAN MICROCONTROLLER

Andrew Sebastian Lehman

Jurusan Sistem Komputer, Fakultas Teknik, Universitas Kristen Maranatha Jl. Prof. drg. Suria Soemantri, MPH no 65, Bandung 40164 Indonesia email: AndrewSebastianL@gmail.com

ABSTRACT

Helipad is a special foundation for the helicopter. Helipad is usually located on a specific place in order to deal with the dangers or problems that come up quickly using a helicopter. Helipad can be made in miniature using DC motors and stepper motors as a driver and a microcontroller as the controller of this helipad. In order to work properly, the DC motors and stepper motors use motor driver and microcontroller Arduino Severino to control the movement of the motor

Kev words

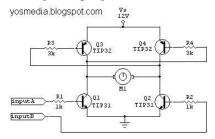
helipad, DC motors, stepper motors, Arduino Severino

1. Pendahuluan

Helipad merupakan landasan khusus bagi helicopter. Helipad biasanya berada pada tempat fasilitas khusus atau tempat yang bersifat darurat seperti rumah sakit, stasiun televisi, markas tim SARS, markas tentara dan markas kepolisian. Hal ini bertujuan supaya dapat menangani bahaya atau masalah yang datang secara cepat dengan menggunakan helicopter. Helipad juga dapat berada di wilayah pribadi karena tidak terlalu membutuhkan lahan yang luas.

Helipad biasanya hanya berada pada area yang terbuka dan terdapat tulisan "H" di landasannya. Namun seiring dengan perkembangan teknologi, helipad dirancang sedemikian rupa sehingga helicopter dapat dimasukkan ke dalam ruangan dan tidak dapat diketahui oleh orang banyak. Ini biasanya dilakukan untuk hal keamanan dan kerahasiaan.

2. Perancangan


2.1.Perancangan Hardware

Pada perancangan hardware, microcontroller yang digunakan adalah Arduino Severino dengan menggunakan ATMega8, 5 tombol press button sebagai sensor, 2 buah motor yaitu DC motor dan stepper motor sebagai penggerak. Tahap perancangan dimulai dari membuat maket *helipad* dengan bentuk yang menyerupai asli. Alat dan bahan yang diperlukan untuk membuat maket ini adalah kayu, baut, kabel, karet, *CD-ROM*, kertas, lem, solder, timah, *adaptor*, bor, *cutter*, 2 buah *motor*, 5 buah tombol *press button*, 8 buah *LED*, *per*, 2 buah rangkaian penguat *motor*.

1

2.1.1.Penguat *DC Motor*

Penguat *DC motor* dibuat dengan menggunakan 2 buah *transistor* TIP32 dan 2 buah *transistor* TIP31. Masing-masing *transistor* disambungkan pada *pin* 6 dan 7 *microcontroller* dengan menggunakan 2 buah kabel serta resistor 1*K Ohm* dan 3*K Ohm*. Besar tegangan yang diberikan pada rangkaian ini adalah 12 *volt*. Gambar 3.1 adalah desain rangkaian penguat *DC motor*.

Gambar 1 Desain Rangkaian Penguat DC Motor

2.1.2.Penguat *Stepper Motor*

Penguat *stepper motor* memiliki prinsip kerja yang hampir sama dengan penguat *DC motor* namun pada penguat *stepper motor* menggunakan 4 buah kabel.

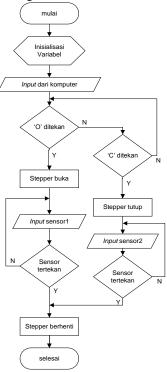
INO, IN1, IN2 dan IN3 dihubungkan dengan pin 5, 4, 3 dan 2 yang berfungsi untuk menerima sinyal *PWM* dari microcontroller.

VCC dan GND dihubungkan dengan pin 5V dan 0V yang berfungsi sebagai supply tegangan untuk mengaktifkan driver motor L-298. Sedangkan VS dihubungkan dengan pin 9V yang berfungsi sebagai supply untuk menggerakkan DC motor. Dengan adanya VS maka IC L-298 tidak terbebani untuk menghidupkan DC motor.

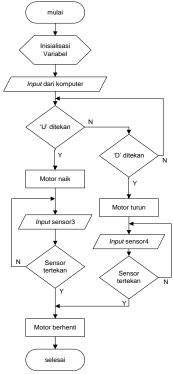
2.1.3.Micro Switch

Rangkaian yang digunakan untuk membaca sensor *micro switch. Micro switch* yang dipakai berjumlah 5 buah. Masing-masing *micro switch* terhubung pada *pin* A0 sampai A4 Arduino. 8 buah *LED* dipasang pada landasan sehingga ketika landasan tersebut telah naik ke atas, 8 *LED* tersebut dapat nyala bergantian.

Penggunaan microcontroller Arduino Severino untuk menerima ditujukan input dari sensor, microcontroller disini juga berfungsi untuk mengirim sinyal yang digunakan untuk mengatur pergerakan DC motor dan stepper motor dengan delay tertentu. Dengan dipilihnya microcontroller Arduino Severino ini karena tidak memerlukan terlalu banyak pin. Arduino Severino mempunyai 14 pin dan dengan dipilihnya microcontroller ini dikarenakan kemudahannya berinteraksi dengan PC, selain itu editor-nya dan program-nya yang mudah dimengerti. Arduino Severino memiliki spesifikasi sebagai berikut:

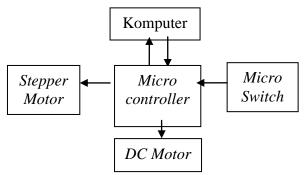

- 1. Microcontroller ATmega8.
- 2. Beroperasi pada tegangan 5V.
- 3. Maksimum tegangan masukan *DC* 9*V* (Batas Tegangan masukan 6-18*V*) *via jack DC1*.
- 4. *Digital I/O Pins* 14 (3 *pin* dapat menghasilkan *output PWM*).
- 5. Jumlah pin analog 6 buah.
- 6. Maksimum arus DC per I/O pin 40 mA.
- 7. *Flash memory* 8*Kb*, 1*Kb* digunakan oleh *bootloader*.
- 8. SRAM 1Kb.
- 9. *EEPROM* 512 *Byte*.
- 10. Clock Speed 16Mhz.
- 11. Pemrograman dan koneksi ke komputer menggunakan *port serial* yang sama.

Tabel 1. Pin-pin yang digunakan pada Arduino Severino


Nama Pin Fungsi		
Pin 2	Output Stepper motor (kaki pin 1)	
Pin 3	Output Stepper motor (kaki pin 2)	
Pin 4	Output Stepper motor (kaki pin 3)	
Pin5	Output Stepper motor (kaki pin 4)	
Pin 6	Output DC motor(kaki pin 5)	
Pin 7	Output DC motor(kaki pin 6)	
Pin 8	Output LED(kaki pin 7)	
Pin 9	Output LED(kaki pin 8)	
Pin 10	Output LED(kaki pin 9)	
Pin 11	Output LED(kaki pin 10)	
Pin A1	Input sensor(kaki pin 11)	
Pin A2	Input sensor(kaki pin 12)	
Pin A3	Input sensor(kaki pin 13)	
Pin A4	Input sensor(kaki pin 14)	
Pin A5	Input sensor(kaki pin 15)	

2.2. Perancangan Software

Tahap perancangan *software* diawali dengan membuat *flowchart* dan diagram blok.



Gambar 2 Flowchart Pintu Gerbang

Gambar 3 Flowchart Landasan

Gambar 2 dan 3 menunjukkan *flowchart* untuk mengendalikan pergerakkan pintu gerbang dan landasan.

Gambar 4 Blok Diagram Helipad

Gambar 4 menunjukkan blok diagram Helipad yang dimulai dari komputer dengan mengirim sinyal perintah menuju microcontroller. Microcontroller yang menerima input dari komputer langsung mengeksekusi perintah yang masuk dan mengeluarkan output menuju stepper motor atau dc motor. Arduino akan menerima input dari sensor micro switch yang mendeteksi pergerakan gerbang atau landasan. Arduino juga akan mengirim laporan feedback menuju komputer.

3. Hasil Percobaan

Gambar 5. Maket helipad

3.1. Pengamatan Gerbang

Pengamatan gerbang dilakukan dengan mengendalikan gerbang melalui program Visual Basic yang telah dibuat. Pengamatan ini bertujuan untuk mengamati apakah kedua sensor dan *stepper motor* dapat bekerja dengan baik atau tidak.

Tabel 2 Data Pengamatan Uji Stepper

Tabel 2 Data Pengamatan Uji Stepper		
Percobaan	Hasil yang	Hasil Pengamatan
	diharapkan	
1	Stepper motor dapat membuka gerbang dengan baik.	Stepper motor dapat membuka gerbang namun pergerakkan motor sedikit tersendat ketika hendak mencapai sensor.
2	Stepper motor dapat menutup gerbang dengan baik.	Stepper motor menutup gerbang dengan baik.
3	Stepper motor dapat membuka gerbang dengan baik.	Stepper motor dapat membuka gerbang namun pergerakkan motor sedikit tersendat ketika hendak mencapai sensor.
4	Stepper motor dapat menutup gerbang dengan baik.	Stepper motor menutup gerbang dengan baik.
5	Stepper motor dapat membuka gerbang dengan baik.	Stepper motor dapat membuka gerbang namun pergerakkan motor sedikit tersendat ketika hendak mencapai sensor.
6	Stepper motor dapat menutup gerbang dengan baik.	Stepper motor menutup gerbang dengan baik.

Tabel 2 menunjukkan hasil pengamatan saat melakukan uji coba *stepper motor* untuk membuka gerbang *helipad*. Setelah beberapa kali melakukan uji coba pada gerbang, *stepper motor* menjadi panas.

Tabel 3 Data Pengamatan Uji Sensor Gerbang

	Jala Feligailialaii Oji s	
Percobaan	Hasil yang	Hasil Pengamatan
	diharapkan	
1	Sensor buka dapat	Sensor buka dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
2	Sensor tutup dapat	Sensor tutup dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
3	Sensor buka dapat	Sensor buka dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
4	Sensor tutup dapat	Sensor tutup dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
5	Sensor buka dapat	Sensor buka dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
6	Sensor tutup dapat	Sensor tutup dapat
	menerima input	terbaca dengan baik.
	dengan baik.	

Tabel 3 menunjukkan hasil pengamatan saat melakukan uji coba sensor buka dan sensor tutup untuk mendeteksi pergerakkan gerbang *helipad*.

3.2. Pengamatan Landasan

Pengamatan landasan dilakukan dengan mengendalikan gerbang melalui program *Visual Basic* yang telah dibuat. Pengamatan ini bertujuan untuk mengamati apakah kedua sensor dan *DC motor* dapat bekerja dengan baik atau tidak.

Tabel 4 Data Pengamatan Uji *DC Motor*

Percobaan	Hasil yang	Hasil Pengamatan
	diharapkan	
1	DC motor dapat	DC motor dapat
	menaikkan	menaikkan landasan
	landasan dengan	namun pergerakkan
	baik.	motor terhenti di
		tengah.
2	DC motor dapat	DC motor
	menurunkan	menurunkan
	landasan dengan	landasan dengan
	baik.	baik.
3	DC motor dapat	DC motor dapat
	menaikkan	menaikkan landasan
	landasan dengan	meskipun
	baik.	pergerakkannya
		lambat.
4	DC motor dapat	DC motor
	menurunkan	menurunkan
	landasan dengan	landasan dengan
	baik.	baik.

5	DC motor dapat menaikkan landasan dengan baik.	DC motor dapat menaikkan landasan dengan baik.
6	DC motor dapat menurunkan landasan dengan baik.	DC motor menurunkan landasan dengan baik.

Tabel 4 menunjukkan hasil pengamatan saat melakukan uji coba DC motor untuk menaikkan atau menurunkan landasan helipad.

Tabel 5 Data Pengamatan Uji Sensor Landasan Helipad

Percobaan	Hasil yang diharapkan	Hasil Pengamatan
		<u> </u>
1	Sensor naik dapat	Sensor naik dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
2	Sensor turun	Sensor turun dapat
	dapat menerima	terbaca dengan baik.
	<i>input</i> dengan baik.	
3	Sensor naik dapat	Sensor naik dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
4	Sensor turun	Sensor turun dapat
	dapat menerima	terbaca dengan baik.
	<i>input</i> dengan baik.	
5	Sensor naik dapat	Sensor naik dapat
	menerima input	terbaca dengan baik.
	dengan baik.	
6	Sensor turun	Sensor turun dapat
	dapat menerima	terbaca dengan baik.
	<i>input</i> dengan baik.	

Tabel 5 menunjukkan hasil pengamatan saat melakukan uji coba sensor buka dan sensor tutup untuk mendeteksi pergerakkan gerbang *helipad*.

4. Kesimpulan

- Adanya pengaruh gaya gesek pada gebang helipad menyebabkan stepper motor tidak mampu menarik gerbang dengan kuat
- Sensor dapat menerima input sesuai perintah yang diberikan.
- 3. Penggunaan sensor *infrared* atau *laser* dapat meningkatkan keakuratan penerimaan *input*.

REFERENSI

[1] Boylestad, R. & Nashelsky, L. 1991. "Electronic Device and Circuit Theory". 4th ed. India. Prentice Hall of India.

- [2] Sasongko, B.H. 2012. "Pemrograman Mikrokontroler dengan Bahasa C". Yogyakarta: C.V. ANDI.
- [3] http://elco-pac.blogspot.com/2011/05/driver-motor-dc-menggunakan-h-bridge.html, diakses November 2012
- [4] http://www.elektronikabersama.web.id/2011/06/saklar-mikro-atau-micro-switch.html, diakses November 2012
- [5] http://fahmizaleeits.wordpress.com/tag/motor-dc-adalah/, diakses November 2012
- [6] http://id.scribd.com/doc/75763152/7/Arduino-Severino-Atmega8, diakses November 2012
- [7] staff.ui.ac.id/internal/040603019/material/makalah*Mo tor*DC.doc, diakses November 2012